(本小題満分12分)如圖,在四棱錐P—ABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,AB=,BC=1,PA=2,E為PD的中點.
(Ⅰ)求直線AC與PB所成角的余弦值;
(Ⅱ)在側(cè)面PAB內(nèi)找一點N,使NE⊥面PAC,并求出N點到AB和AP的距離.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在正三棱柱ABC-A1B1C1中,AB=2,AA1=,點D為AC的中點,點E在線段AA1上.
(1)當(dāng)AE∶EA1=1∶2時,求證DE⊥BC1;
(2)是否存在點E,使二面角D-BE-A等于60°,若存在求AE的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖, 在直角梯形中,
∥
點分別是的中點,現(xiàn)將折起,使,
(1)求證:∥平面;
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖:在空間四邊形ABCD中,AB,BC,BD兩兩垂直,且AB=BC=2,E是AC的中點,異面直線AD和BE所成的角為,求BD的長度.(15分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點,AB="4AN," M、S分別為PB,BC的中點.以A為原點,射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知直線l的傾斜角為,直線l1經(jīng)過點A(3,2)和B(a,-1),且直線l1與直線l垂直,直線l2的方程為2x+by+1=0,且直線l2與直線l1平行,則a+b等于( )
A.-4 | B.-2 | C.0 | D.2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com