已知: 、、是同一平面內(nèi)的三個向量,其中 =(1,2)

(1)若| |,且,求的坐標(biāo);

(2)若| |=垂直,求的夾角.

 

【答案】

(1) 或;(2).

【解析】

試題分析:(1)設(shè),由 可得    3分

解得 或                      5分

 或                         6分

(2)

 即            8分

,整理得            10分

                      12分

                   13分

考點:本題主要考查平面向量的數(shù)量積,平面向量的平行與垂直,平面向量的坐標(biāo)運算。

點評:中檔題,平面向量的夾角公式。向量平行,等價于。向量垂直,等價于。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某中心接到其正東、正西、正北方向三個觀測點的報告:正西、正北兩個觀測點同時聽到了一聲巨響,正東觀測點聽到的時間比其他兩觀測點晚4s.已知各觀測點到該中心的距離都是1020m.試確定該巨響發(fā)生的位置.(假定當(dāng)時聲音傳播的速度為340m/s:相關(guān)各點均在同一平面上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,錯誤的命題是

①在四邊形ABCD中,若
AC
=
AB
+
AD
,則ABCD為平行四邊形
②已知
a
,
b
,
a
+
b
為非零向量,且a+b平分a與b的夾角,則|a|=|b|
③已知a與b不共線,則a+b與a-b不共線
④對實數(shù)λ1,λ2,λ3,則三向量λ1λ2,λ2b-λ3c,λ3c-λ1a不一定在同一平面上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年廣東卷)(12分)

某中心接到其正東、正西、正北方向三個觀測點的報告:正西、正北兩個觀測點同時聽到一聲巨響,正東觀測點聽到巨響的時間比其他兩個觀測點晚,已知各觀測點到中心的距離都是,試確定該巨響的位置。(假定當(dāng)時聲音傳播的速度為,各相關(guān)點均在同一平面上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中心接到其正東、正西、正北方向三個觀測點的報告:正西、正北兩個觀測點同時聽到了一聲巨響,正東觀測點聽到的時間比其他兩觀測點晚4s. 已知各觀測點到該中心的距離都是1020m. 試確定該巨響發(fā)生的位置.(假定當(dāng)時聲音傳播的速度為340m/ s :相關(guān)各點均在同一平面上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年海南省高二上學(xué)期第二次月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)某中心接到其正東、正西、正北方向三個觀測點的報告:正西、正北兩個觀測點同時聽到了一聲巨響,正東觀測點聽到的時間比其他兩觀測點晚4s. 已知各觀測點到該中心的距離都是1020m. 試確定該巨響發(fā)生的位置.(假定當(dāng)時聲音傳播的速度為340m/ s :相關(guān)各點均在同一平面上).

 

查看答案和解析>>

同步練習(xí)冊答案