7.電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,如圖是根據(jù)調(diào)查結(jié)果得到的2×2列聯(lián)表.
(Ⅰ)補(bǔ)全2×2列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認(rèn)為“體育迷”與性別有關(guān)?
(Ⅱ)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為“超級(jí)體育迷”,已知有5名“超級(jí)體育迷”,其中3名男性2名女性,若從“超級(jí)體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
非體育迷體育迷合計(jì)
3015
451055
合計(jì)100
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量
 P(K2≥k) 0.05 0.01
 k 3.841 6.0635

分析 (Ⅰ)根據(jù)題意填寫列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論;
(Ⅱ)用列舉法求出基本事件數(shù),計(jì)算所求的概率值.

解答 解:(Ⅰ)根據(jù)題意,填寫2×2列聯(lián)表如下:

非體育迷體育迷合計(jì)
301545
451055
合計(jì)7525100
將2×2列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,
得$k=\frac{{100×{{({30×10-45×15})}^2}}}{75×25×45×55}=\frac{100}{33}≈3.030$,
因?yàn)?.030<3.841,所以我們沒(méi)有95%的把握認(rèn)為“體育迷”與性別有關(guān);
(Ⅱ)用A、B、C表示3名男生,d、e表示2名女生,則從5人中任取2人中,
基本事件為AB、AC、Ad、Ae、BC、Bd、Be、Cd、Ce、de共10種,
至少有1人是女性的基本事件是Ad、Ae、Bd、Be、Cd、Ce、de共7種,
故所求的概率值為P=$\frac{7}{10}$.

點(diǎn)評(píng) 本題考查了列聯(lián)表與獨(dú)立性檢驗(yàn)的應(yīng)用問(wèn)題,也考查了列舉法求古典概型的概率問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={x|x+1>0},B={-2,-1,0,1},則(∁RA)∩B=( 。
A.{-2}B.{-2,-1}C.{-1,0,1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.為了解心肺疾病是否與年齡相關(guān),現(xiàn)隨機(jī)抽取了40名市民,得到數(shù)據(jù)如下表:
患心肺疾病不患心肺疾病合計(jì)
大于40歲16
小于等于40歲12
合計(jì)40
已知在全部的40人中隨機(jī)抽取1人,抽到不患心肺疾病的概率為$\frac{2}{5}$.
(1)請(qǐng)將2×2列聯(lián)表補(bǔ)充完整;據(jù)此數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為患心肺疾病與年齡有關(guān)?
(2)(2)已知大于40歲患心肺疾病市民中,經(jīng)檢查其中有4名重癥患者,專家建議重癥患者住院治療,現(xiàn)從這16名患者中選出兩名,記需住院治療的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.正四棱臺(tái)的兩底面邊長(zhǎng)分別為1cm和2cm,它的側(cè)面積是$3\sqrt{5}c{m^2}$,求該正四棱臺(tái)的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.?dāng)?shù)列0,$\frac{2}{3}$,$\frac{4}{5}$,$\frac{6}{7}$…的一個(gè)通項(xiàng)公式為( 。
A.an=$\frac{2(n-1)}{2n-1}$B.an=$\frac{n-1}{2n+1}$C.an=$\frac{n-1}{n+1}$D.an=$\frac{2n}{3n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知命題p:?x∈R,x2+x-6≤0,則命題¬p是( 。
A.?x∈R,x2+x-6>0B.?x∈R,x2+x-6>0C.?x∈R,x2+x-6>0D.?x∈R,x2+x-6<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立坐標(biāo)系,已知直線l:$\left\{\begin{array}{l}{x=t}\\{y=1-\sqrt{3}t}\end{array}\right.$(t為參數(shù))曲線C的極坐標(biāo)方程為4ρcos2θ-sinθ=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),P(0,1),求||PA|-|PB||.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知拋物線y2=4x,A,B是拋物線的兩點(diǎn)(分別在x軸兩側(cè)),AB=6,過(guò)A,B分別作拋物線的切線l1,l2,l1與l2交于點(diǎn)Q,求三角形ABQ面積的最大值( 。
A.$\frac{27}{2}$B.8C.12$\sqrt{3}$D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知命題p:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角$θ>\frac{π}{4}$,則下面敘述正確的是(  )
A.¬p為:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角θ>$\frac{π}{4}$
B.¬p為:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角$θ>\frac{π}{4}$
C.¬p:?a∈[2,+∞),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的傾斜角θ≤$\frac{π}{4}$
D.¬p是假命題

查看答案和解析>>

同步練習(xí)冊(cè)答案