2.在一個(gè)口袋中裝有大小相同的5個(gè)白球和3個(gè)黑球,從中摸出3個(gè)球,至少摸到2個(gè)黑球的概率為(  )
A.$\frac{9}{28}$B.$\frac{3}{8}$C.$\frac{3}{7}$D.$\frac{2}{7}$

分析 先求出基本事件總數(shù)n=${C}_{8}^{3}$,至少摸到2個(gè)黑球是指摸到2個(gè)黑球1個(gè)白球和摸到3個(gè)黑球,由此能求出至少摸到2個(gè)黑球的概率.

解答 解:在一個(gè)口袋中裝有大小相同的5個(gè)白球和3個(gè)黑球,從中摸出3個(gè)球,
基本事件總數(shù)n=${C}_{8}^{3}$,
至少摸到2個(gè)黑球是指摸到2個(gè)黑球1個(gè)白球和摸到3個(gè)黑球,
至少摸到2個(gè)黑球的概率為:
p=$\frac{{C}_{3}^{2}{C}_{5}^{1}}{{C}_{8}^{3}}+\frac{{C}_{3}^{3}}{{C}_{8}^{3}}$=$\frac{2}{7}$.
故選:D.

點(diǎn)評(píng) 本題考查概率的求法,涉及到古典概型、互斥事件概率加法公式等知識(shí)點(diǎn),考查推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力,考查化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F1,F(xiàn)2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),以F1F2為直徑的圓與雙曲線右支的一個(gè)交點(diǎn)為P,PF1與雙曲線相交于Q,且|PQ|=2|QF1|,則雙曲線的離心率為( 。
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,ED⊥平面ABCD,F(xiàn)B∥ED,且ED=FB=1,G為BC的中點(diǎn).
(1)求此幾何體的體積;
(2)在線段AF上是否存在點(diǎn)P,使得GP⊥平面AEF?若存在,求線段AP的長(zhǎng),若不存在,請(qǐng)說明理由;
(3)求二面角E-AF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知p:${log_2}({{x^2}-3x})>2$,q:$\frac{x-4}{x+1}>0$,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z=x+(x-a)i,若對(duì)任意實(shí)數(shù)x∈(1,2),恒有|z|>|$\overline{z}$+i|,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,$\frac{1}{2}$]B.(-∞,$\frac{1}{2}$)C.[$\frac{3}{2}$,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個(gè)幾何體的三視圖如右圖所示,則該幾何體的體積為(  )
A.$\frac{5}{3}$B.$\frac{{10\sqrt{3}}}{3}$C.$\frac{10}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
總計(jì)
愛好402060
不愛好203050
總計(jì)6050110
其中${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
附表
P(K2≥k)0.0500.0100.001
k3,8416.63510.828
問能否有99%以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)p:0<x<2,q:2x>1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=1,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=anan+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案