14.通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動,得到如下的列聯(lián)表:
總計(jì)
愛好402060
不愛好203050
總計(jì)6050110
其中${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
附表
P(K2≥k)0.0500.0100.001
k3,8416.63510.828
問能否有99%以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動與性別有關(guān)?

分析 根據(jù)條件中所給的觀測值,同題目中節(jié)選的觀測值表進(jìn)行檢驗(yàn),得到觀測值對應(yīng)的結(jié)果,得到結(jié)論有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”.

解答 解:由K2=$\frac{110×(40×30-20×20)^{2}}{60×50×60×50}$≈7.822>6.635,
∴有99%以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動與性別有關(guān).

點(diǎn)評 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查對于觀測值表的認(rèn)識,這種題目一般運(yùn)算量比較大,主要要考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知數(shù)列{an}是等差數(shù)列,且${a_1}+{a_5}+{a_9}=\frac{π}{4}$,求$sin({{a_4}+{a_6}+\frac{2017π}{2}})$的值;
(2)已知數(shù)列{an}是等差數(shù)列,且滿足${a_2}^2={a_1}{a_5},{a_1}+{a_2}+{a_5}=26$,求數(shù)列{an}的 通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)0≤x<2π,且$\sqrt{1-sin2x}$=sinx-cosx,則x的取值范圍是$[\frac{π}{4},\frac{5π}{4}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在一個(gè)口袋中裝有大小相同的5個(gè)白球和3個(gè)黑球,從中摸出3個(gè)球,至少摸到2個(gè)黑球的概率為( 。
A.$\frac{9}{28}$B.$\frac{3}{8}$C.$\frac{3}{7}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖所示的程序框圖,當(dāng)輸入x的值為3時(shí),則其輸出的結(jié)果是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知全集U=R,非空集合$A=\left\{{x|\frac{x-2}{{x-({3a+1})}}<0}\right\},B=\left\{{x|\frac{{x-{a^2}-2}}{x-a}<0}\right\}$.
(1)當(dāng)$a=\frac{1}{2}$時(shí),求(∁UB)∩A;
(2)命題p:x∈A,命題q:x∈B,若p是q的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.4個(gè)男生,3個(gè)女生站成一排.(必須寫出算式再算出結(jié)果才得分)
(Ⅰ)3個(gè)女生必須排在一起,有多少種不同的排法?
(Ⅱ)任何兩個(gè)女生彼此不相鄰,有多少種不同的排法?
(Ⅲ)甲乙二人之間恰好有三個(gè)人,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某超市為了解顧客的購物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如表所示.
一次購物量1至4件5至8件9至12件13至16件17件及以上
顧客數(shù)(人)x3025y10
結(jié)算時(shí)間(分鐘/人)11.522.53
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(1)確定x,y的值,并求顧客一次購物的結(jié)算時(shí)間X的分布列與數(shù)學(xué)期望;
(2)若某顧客到達(dá)收銀臺時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過3 鐘的概率.(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知正方形ABCD和矩形ACEF所在平面相互垂直,$AB=\sqrt{2},AF=1$,M在線段EF上.
(1)若M是線段EF的中點(diǎn),證明:平面AMD⊥平面BDF;
(2)命題“若M為線段EF的中點(diǎn),則平面ADM⊥平面BDF”的逆命題是否成立?若成立,給出證明,否則請舉出反例.

查看答案和解析>>

同步練習(xí)冊答案