【題目】已知過橢圓的左焦點,作斜率為的直線,交橢圓兩點.

(1)若原點到直線的距離為,求直線的方程;

(2)設(shè)點,直線與橢圓交于另一點,直線與橢圓交于另一點.設(shè)的斜率為,則是否為定值?若是,求出該定值;若不是,請說明理由.

【答案】(1);(2).

【解析】

(1)設(shè)過點F且斜率為k的直線l的方程為,利用點到直線的距離公式,求得,即可得到所求直線的方程;

(2)設(shè),,,設(shè)直線AM的方程為,

聯(lián)立方程組,根據(jù)根據(jù)與系數(shù)的關(guān)系,求得,所以,進而得到,同理得到,化簡得到,即可得到結(jié)論.

(1)由橢圓,可知,

所以可設(shè)過點F且斜率為k的直線l的方程為,

,設(shè)原點O到直線l的距離為d,則,

依題意有,

所以所求的直線l的方程為.

(2)設(shè),,,

因為點,所以可設(shè)直線AM的方程為

聯(lián)立方程,消去y,

整理,得.(*)

所以,是方程(*)的兩實根,所以,所以,

所以.

所以

同理,,即.

所以

,

所以(定值).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一塊地皮,其中, 是直線段,曲線段是拋物線的一部分,且點是該拋物線的頂點, 所在的直線是該拋物線的對稱軸.經(jīng)測量, km, km, .現(xiàn)要從這塊地皮中劃一個矩形來建造草坪,其中點在曲線段上,點 在直線段上,點在直線段上,設(shè)km,矩形草坪的面積為km2

(1)求,并寫出定義域;

(2)當為多少時,矩形草坪的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)甲、乙、丙三所單位進行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )

A.36B.72C.108D.144

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中,平面,,,,的中點,是線段上的一點,且.

(1)求證:平面;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當時,

①求曲線在點處的切線方程;

②求函數(shù)在區(qū)間上的值域.

(2)對于任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某企業(yè)的某種產(chǎn)品中抽取件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得如下頻率分布直方圖:

(Ⅰ)求這件產(chǎn)品質(zhì)量指標值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表,記作,);

(Ⅱ)由頻率分布直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差

(i)若使的產(chǎn)品的質(zhì)量指標值高于企業(yè)制定的合格標準,則合格標準的質(zhì)量指標值大約為多少?

(ii)若該企業(yè)又生產(chǎn)了這種產(chǎn)品件,且每件產(chǎn)品相互獨立,則這件產(chǎn)品質(zhì)量指標值不低于的件數(shù)最有可能是多少?

附:參考數(shù)據(jù)與公式:,;若,則①;②;③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{}的首項a12,前n項和為,且數(shù)列{}是以為公差的等差數(shù)列·

1)求數(shù)列{}的通項公式;

2)設(shè),,數(shù)列{}的前n項和為,

①求證:數(shù)列{}為等比數(shù)列,

②若存在整數(shù)m,n(mn1),使得,其中為常數(shù),且2,求的所有可能值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線和圓,直線與拋物線和圓分別交于四個點(自下而上的順序為),則的值為_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,焦距為,拋物線 的焦點是橢圓的頂點.

(1)求的標準方程;

(2)上不同于的兩點, 滿足,且直線相切,求的面積.

查看答案和解析>>

同步練習冊答案