【題目】如圖是一塊地皮,其中 是直線段,曲線段是拋物線的一部分,且點(diǎn)是該拋物線的頂點(diǎn), 所在的直線是該拋物線的對(duì)稱軸.經(jīng)測(cè)量, km, km, .現(xiàn)要從這塊地皮中劃一個(gè)矩形來建造草坪,其中點(diǎn)在曲線段上,點(diǎn), 在直線段上,點(diǎn)在直線段上,設(shè)km,矩形草坪的面積為km2

(1)求,并寫出定義域;

(2)當(dāng)為多少時(shí),矩形草坪的面積最大?

【答案】(1),定義域?yàn)?/span>

(2)當(dāng)時(shí),矩形草坪的面積最大.

【解析】試題分析:

(1)由題意可得函數(shù)的解析式為,定義域?yàn)?/span>

(2)對(duì)函數(shù)求導(dǎo),結(jié)合導(dǎo)函數(shù)與原函數(shù)的關(guān)系可得當(dāng)時(shí),矩形草坪的面積最大.

試題解析:

(1)

O為原點(diǎn),OA邊所在直線為軸,建立

如圖所示的平面直角坐標(biāo)系,

過點(diǎn)于點(diǎn),

在直角中, ,

所以,又因?yàn)?/span>,

所以,則,

設(shè)拋物線OCB的標(biāo)準(zhǔn)方程為,

代入點(diǎn)的坐標(biāo),得

所以拋物線的方程為

因?yàn)?/span>,所以,則,

所以 ,定義域?yàn)?/span>

(2),令,得

當(dāng)時(shí), , 上單調(diào)增;

當(dāng)時(shí), 上單調(diào)減.

所以當(dāng)時(shí), 取得極大值,也是最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點(diǎn),Q為圓周上任一點(diǎn).線段AQ的垂直平分線與CQ的連線交于點(diǎn)M,則M的軌跡方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓, 在拋物線上,圓過原點(diǎn)且與的準(zhǔn)線相切.

(Ⅰ) 求的方程;

(Ⅱ) 點(diǎn),點(diǎn)(與不重合)在直線上運(yùn)動(dòng),過點(diǎn)的兩條切線,切點(diǎn)分別為, .求證: (其中為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M:x2+y2+4x﹣2y+3=0,直線l過點(diǎn)P(﹣3,0),圓M的圓心坐標(biāo)是;若直線l與圓M相切,則切線在y軸上的截距是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《張邱建算經(jīng)》是中國(guó)古代數(shù)學(xué)史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹, 竹尾風(fēng)割斷, 剩下三十節(jié),一節(jié)一個(gè)圈. 頭節(jié)高五寸,頭圈一尺三.逐節(jié)多三分,逐圈少分三. 一蟻往上爬,遇圈則繞圈. 爬到竹子頂,行程是多遠(yuǎn)?”(注釋:第一節(jié)的高度為尺;第一圈的周長(zhǎng)為尺;每節(jié)比其下面的一節(jié)多尺;每圈周長(zhǎng)比其下面的一圈少尺) 問:此民謠提出的問題的答案是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四面體的六條棱中,有五條棱長(zhǎng)都等于a,則該四面體的體積的最大值為(
A. ?a3
B. ?a3
C. ?a3
D. ?a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2﹣4x+3,若f(x)≥mx對(duì)任意的實(shí)數(shù)x≥2都成立,則實(shí)數(shù)m的取值范圍是(
A.[﹣2 ﹣4,﹣2 ?+4]
B.(﹣∞,﹣2 ﹣4]∪[﹣2 ?+4,+∞)
C.[﹣2 ?+4,+∞)
D.(﹣∞,﹣ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若存在最小值,求的取值范圍;

(Ⅱ)當(dāng)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(ax﹣1)(x﹣1).
(1)若不等式f(x)<0的解集為{x|1<x<2},求實(shí)數(shù)a的值;
(2)當(dāng)a>0時(shí),解關(guān)于x的不等式f(x)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案