【題目】如圖,在底面是矩形的四棱錐PABCD中,PA平面ABCDPA = AB = 2,BC = 4EPD的中點,

1)求證: 平面EAC;

2)求證:平面PDC平面PAD;

3)求多面體的體積.

【答案】1見解析2見解析34

【解析】試題分析:

(1)做出輔助線,由結(jié)合線面平行的判斷定理即可證得平面EAC;

(2)由題意可證得CD⊥平面PAD,結(jié)合面面垂直的判斷定理即可證得平面PDC⊥平面PAD

(3)將原問題轉(zhuǎn)化為組合體體積之差的問題,分別求解體積值可得多面體的體積是4.

試題解析:

1)連接BDAC于點G,連接EG,因為EPD的中點,GBD的中點,

所以,又因為,

所以.

2,,.

    , . , 平面

. .

3,因為EPD的中點, ,

所以點E到平面ADC的距離是, ,

所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知命題 “存在”,命題“曲線表示焦點在軸上的橢圓”,命題 曲線表示雙曲線”

1若“”是真命題,求實數(shù)的取值范圍;

2的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過原點的動直線與圓相交于不同的兩點

1求線段的中點的軌跡的方程;

2是否存在實數(shù)使得直線與曲線只有一個交點?若存在,求出的取值范圍;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率=利潤÷保費收入)的頻率分布直方圖如圖所示:

(Ⅰ)試估計平均收益率;

(Ⅱ)根據(jù)經(jīng)驗,若每份保單的保費在20元的基礎(chǔ)上每增加元,對應的銷量(萬份)與(元)有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組的對應數(shù)據(jù):

據(jù)此計算出的回歸方程為.

(i)求參數(shù)的估計值;

(ii)若把回歸方程當作的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計此產(chǎn)品的收益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大收益,并求出該最大收益.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,以Ox軸為始邊作兩個銳角αβ,它們的終邊分別與單位圓相交于A,B兩點,已知AB的橫坐標分別為, .求:

1tan(αβ)的值;

2α的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構(gòu)為調(diào)查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計如下:

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關(guān)?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機抽取3人,求至多有1位教師的概率.

附: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】化簡sin(x+y)sinx+cos(x+y)cosx等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:

(1)求的值;

(2)求證:數(shù)列是等比數(shù)列;

(3)令),如果對任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案