精英家教網 > 高中數學 > 題目詳情

【題目】我國古代數學著作《九章算術》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為日.(結果保留一位小數,參考數據:lg2≈0.30,lg3≈0.48)

【答案】2.6
【解析】解:設蒲(水生植物名)的長度組成等比數列{an},其a1=3,公比為 ,其前n項和為An . 莞(植物名)的長度組成等比數列{bn},其b1=1,公比為2,
其前n項和為Bn . 則An= ,Bn= ,
由題意可得: = ,化為:2n+ =7,
解得2n=6,2n=1(舍去).
∴n= =1+ ≈2.6.
∴估計2.6日蒲、莞長度相等,
所以答案是:2.6.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC=2,∠ABC=90°,DA=DC= .現沿對角線AC折起,使得平面DAC⊥平面ABC,此時點A,B,C,D在同一個球面上,則該球的體積是(
A.
B.
C.
D.12π

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數 的圖象向左平移 個單位,再向上平移1個單位,得到g(x)的圖象.若g(x1)g(x2)=9,且x1 , x2∈[﹣2π,2π],則2x1﹣x2的最大值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有下列說法:
①在殘差圖中,殘差點比較均勻地落在水平的帶狀區(qū)域內,說明選用的模型比較合適;
②用相關指數R2來刻畫回歸的效果,R2值越大,說明模型的擬合效果越好;
③比較兩個模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的模型,擬合效果越好.
④在研究氣溫和熱茶銷售杯數的關系時,若求得相關指數R2≈0.85,則表明氣溫解釋了15%的熱茶銷售杯數變化.
其中正確命題的個數是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的一個頂點為A(2,0),離心率為 .直線y=k(x-1)與橢圓C交于不同的兩點M、N.
(1)求橢圓C的方程.
(2)當△AMN的面積為 時,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設 表示三條不同的直線, 表示三個不同的平面,給出下列三個命題:①若 ,則 ;②若 , 內的射影, ,則 ;③若 . 其中真命題的個數為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務區(qū)等場所提供的自行車單車共享服務,由于其依托“互聯(lián)網+”,符合“低碳出行”的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ) 求圖中x的值;
(Ⅱ) 已知滿意度評分值在[90,100]內的男生數與女生數的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取4人進行座談,設其中的女生人數為隨機變量X,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正三角形的邊長為2,將它沿高翻折,使點與點間的距離為,此時四面體外接球表面積為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋擲兩顆骰子,求:

(1)向上點數之和是的倍數的概率;

(2)向上點數之和大于小于的概率.

查看答案和解析>>

同步練習冊答案