5.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足3an-2Sn-1=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn=$\frac{n(2{S}_{n}+1)}{{a}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求f(n)=$\frac{_{n}}{{T}_{n}+24}$(n∈N+)的最大值.

分析 (1)由3an-2Sn-1=0,①則3an+1-2Sn+1-1=0,②然后②-①得an+1=3an,求出數(shù)列{an}是公比為3的等比數(shù)列,進(jìn)一步求出首項(xiàng),則數(shù)列{an}的通項(xiàng)公式可求;
(2)由①知,2Sn=3an-1,求出bn=3n,再求出Tn,然后由基本不等式即可求出f(n)的最大值.

解答 解:(1)由3an-2Sn-1=0,①
則3an+1-2Sn+1-1=0,②
②-①得an+1=3an,
∴數(shù)列{an}是公比為3的等比數(shù)列.
由3a1-2S1-1=0,得a1=1,
∴${a}_{n}={3}^{n-1}$;
(2)由①知,2Sn=3an-1,
∴bn=$\frac{n(2{S}_{n}+1)}{{a}_{n}}$=3n.
${T}_{n}=\frac{n(_{1}+_{n})}{2}=\frac{3{n}^{2}+3n}{2}$.
$f(n)=\frac{_{n}}{{T}_{n}+24}=\frac{3n}{\frac{3{n}^{2}+3n}{2}+24}$=$\frac{2n}{{n}^{2}+n+16}=\frac{2}{n+\frac{16}{n}+1}≤\frac{2}{9}$.
當(dāng)且僅當(dāng)$n=\frac{16}{n}$,即n=4時,等號成立.
∴f(n)的最大值為$f(4)=\frac{2}{9}$.

點(diǎn)評 本題考查了數(shù)列的通項(xiàng)公式,考查了數(shù)列的前n項(xiàng)和,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)若雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1的離心率e∈(1,2),求實(shí)數(shù)m的取值范圍;
(2)若方程$\frac{{x}^{2}}{2t}$-$\frac{{y}^{2}}{t-1}$=1表示橢圓,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n和為Sn,且Sn=$\frac{{({{a_n}+2})({{a_n}-1})}}{2}$(n∈N*).
(Ⅰ)求證:數(shù)列{an}是等差數(shù)列;
(Ⅱ)設(shè)bn=an•3n,求數(shù)列{bn}的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知拋物線E:y2=2px(p>0)的焦點(diǎn)F恰好與圓C:x2+y2-2x=0的圓心重合,過焦點(diǎn)F的直線l與拋物線E交于不同的兩點(diǎn)A,B.
(Ⅰ)求拋物線E的方程;
(Ⅱ)若O是坐標(biāo)原點(diǎn),試問$\overrightarrow{OA}$•$\overrightarrow{OB}$是否為一定值?若是定值,請求出,否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(sinx+cosx)2+2cos2x-2.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[$\frac{π}{4}$,$\frac{3π}{4}$]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)i是虛數(shù)單位,若復(fù)數(shù)z=5(1+i)i,則z的共軛復(fù)數(shù)為(  )
A.-5+5iB.-5-5iC.5-5iD.5+5i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.(x+3)5展開式中x2的系數(shù)為270.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.因?yàn)閍、b∈R+,a+b≥2$\sqrt{ab}$(大前提),x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$(小前提),所以x+$\frac{1}{x}$≥2(結(jié)論),以上推理過程中( 。
A.完全正確B.大前提錯誤C.小前提錯誤D.結(jié)論錯誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=ax2-(b+1)xlnx-b,曲線y=f(x)在點(diǎn)P(e,f(e))處的切線方程為2x+y=0.
(1)求f(x)的解析式;
(2)研究函數(shù)f(x)在區(qū)間(0,e4]內(nèi)的零點(diǎn)的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案