20.已知函數(shù)f(x)=(sinx+cosx)2+2cos2x-2.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[$\frac{π}{4}$,$\frac{3π}{4}$]時(shí),求函數(shù)f(x)的值域.

分析 (1)化簡(jiǎn)函數(shù)f(x),即可求出f(x)的最小正周期與單調(diào)遞增區(qū)間;
(2)求出x∈[$\frac{π}{4}$,$\frac{3π}{4}$]時(shí),2x+$\frac{π}{4}$的取值范圍,即可得出sin(2x+$\frac{π}{4}$)的取值范圍,從而求出函數(shù)f(x)的值域.

解答 解:(1)函數(shù)f(x)=(sinx+cosx)2+2cos2x-2
=(1+2sinxcosx)+2•$\frac{1+cos2x}{2}$-2
=sin2x+cos2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴函數(shù)f(x)的最小正周期為T(mén)=$\frac{2π}{2}$=π;
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{3π}{8}$+kπ≤x≤$\frac{π}{8}$+kπ,k∈Z,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ],(k∈Z);
(2)當(dāng)x∈[$\frac{π}{4}$,$\frac{3π}{4}$]時(shí),$\frac{π}{2}$≤2x≤$\frac{3π}{2}$,
∴$\frac{3π}{4}$≤2x+$\frac{π}{4}$≤$\frac{7π}{4}$,
∴-1≤sin(2x+$\frac{π}{4}$)≤$\frac{\sqrt{2}}{2}$,
∴-$\sqrt{2}$≤f(x)≤1;
即函數(shù)f(x)的值域是[-$\sqrt{2}$,1].

點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換以及三角函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)滿(mǎn)足f(logax)=$\frac{a}{{{a^2}-1}}$(x-x-1),其中a>0,a≠1,
(1)討論f(x)的奇偶性和單調(diào)性;
(2)對(duì)于函數(shù)f(x),當(dāng)x∈(-1,1)時(shí),f(1-m)+f(-2m)<0,求實(shí)數(shù)m取值的集合;
(3)是否存在實(shí)數(shù)a,使得當(dāng)x∈(-∞,2)時(shí)f(x)的值恒為負(fù)數(shù)?,若存在,求a的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.對(duì)于a∈R,下列等式中恒成立的是( 。
A.cos(-α)=-cosαB.sin(-α)=-sinαC.sin(90°-α)=sinαD.cos(90°-α)=cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如果sin(x+$\frac{π}{2}$)=$\frac{1}{2}$,則cos(-x)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知變量x,y滿(mǎn)足條件$\left\{\begin{array}{l}{x-y+1≤0}\\{x≥-1}\\{y≤1}\end{array}\right.$,則z=3x+2y的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足3an-2Sn-1=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn=$\frac{n(2{S}_{n}+1)}{{a}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求f(n)=$\frac{_{n}}{{T}_{n}+24}$(n∈N+)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AC}$=$\overrightarrow$,若點(diǎn)D滿(mǎn)足$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,則$\overrightarrow{AD}$用$\overrightarrow$、$\overrightarrow{c}$表示的結(jié)果為$\overrightarrow{AD}$=$\frac{1}{3}\overrightarrow$+$\frac{2}{3}$$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.將函數(shù)f(x)=sin(2x-$\frac{π}{4}$)的圖象上所有點(diǎn)的橫坐標(biāo)縮小為原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),得到g(x)的圖象,則g(x)=sin(4x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=x2-6x+4lnx,則函數(shù)f(x)的增區(qū)間為( 。
A.(-∞,1),(2,+∞)B.(-∞,0),(1,2)C.(0,1),(2,+∞)D.(1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案