【題目】已知橢圓的左右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上,直線與橢圓交于,兩點(diǎn),與軸、軸分別相交于點(diǎn)和點(diǎn),且,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),的延長(zhǎng)線交橢圓于點(diǎn),過(guò)點(diǎn)、分別做軸的垂線,垂足分別為、.

(1)求橢圓的方程;

(2)是否存在直線,使得點(diǎn)平分線段,?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)答案見(jiàn)解析.

【解析】試題分析: (1)由正三角形的高與邊長(zhǎng)的關(guān)系可求出,再由點(diǎn) 在橢圓上,可求出 的值,從而求出橢圓方程; (2)假設(shè)存在,由直線方程可求出 點(diǎn)的坐標(biāo),由已知條件可求出 點(diǎn)的坐標(biāo),設(shè)聯(lián)立直線與橢圓的方程,消去 ,得到關(guān)于 的一元二次方程,由韋達(dá)定理可求出 的表達(dá)式以及直線 的斜率,聯(lián)立直線與橢圓方程,可求出的表達(dá)式,進(jìn)而求出的表達(dá)式, 由平分線段,求出的值,得出直線方程.

試題解析:(1)由題意知,即,,即,

在橢圓上,∴,

所以橢圓方程為.

(2)存在

設(shè),∵

,

,

聯(lián)立

平分線段,則

,, ∴

把①,②代入,得

所以直線的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,海中一小島C周?chē)?/span>nmile內(nèi)有暗礁,貨輪由西向東航行至A處測(cè)得小島C位于北偏東75°方向上,航行8nmile后,于B處測(cè)得小島C在北偏東60°方向上.

1)如果這艘貨輪不改變航向繼續(xù)前進(jìn),有沒(méi)有觸礁的危險(xiǎn)?請(qǐng)說(shuō)明理由.

2)如果有觸礁的危險(xiǎn),這艘貨輪在B處改變航向?yàn)槟掀珫|α°α>0)方向航行,順利繞過(guò)暗礁,求a的最大值.(附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)容器的蓋子用一個(gè)正四棱臺(tái)和一個(gè)球焊接而成,球的半徑為R,正四棱臺(tái)的上、下底面邊長(zhǎng)分別為2.5R3R,斜高為0.6R

1)求這個(gè)容器蓋子的表面積(用R表示,焊接處對(duì)面積的影響忽略不記);

2)若R2cm,為蓋子涂色時(shí)所用的涂料每0.4kg可以涂1m2,計(jì)算100個(gè)這樣的蓋子約需涂料多少kg(精確到0.1kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2α4cosα=0.已知直線l的參數(shù)方程為為參數(shù)),點(diǎn)M的直角坐標(biāo)為.

1)求直線l和曲線C的普通方程;

2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種出口產(chǎn)品的關(guān)稅稅率為,市場(chǎng)價(jià)格(單位:千元)與市場(chǎng)供應(yīng)量(單位:萬(wàn)件)之間近似滿(mǎn)足關(guān)系式:,其中、均為常數(shù).當(dāng)關(guān)稅稅率時(shí),若市場(chǎng)價(jià)格為5千元,則市場(chǎng)供應(yīng)量約為1萬(wàn)件;若市場(chǎng)價(jià)格為7千元,則市場(chǎng)供應(yīng)量約為2萬(wàn)件.

(1)試確定、的值;

(2)市場(chǎng)需求量(單位:萬(wàn)件)與市場(chǎng)價(jià)格近似滿(mǎn)足關(guān)系式:,當(dāng)時(shí),市場(chǎng)價(jià)格稱(chēng)為市場(chǎng)平衡價(jià)格,當(dāng)市場(chǎng)平衡價(jià)格不超過(guò)4千元時(shí),試確定關(guān)稅稅率的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,在四面體中,點(diǎn)分別是棱的中點(diǎn).

)求證:平面;

)求證:四邊形為矩形;

)是否存在點(diǎn),到四面體六條棱的中點(diǎn) 的距離相等?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點(diǎn),求證:平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)站登錄密碼由四位數(shù)字組成,某同學(xué)將四個(gè)數(shù)字03,2,5,編排了一個(gè)順序作為密碼.由于長(zhǎng)時(shí)間未登錄該網(wǎng)站,他忘記了密碼.若登錄時(shí)隨機(jī)輸入由0,3,2,5組成的一個(gè)密碼,則該同學(xué)不能順利登錄的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)在研究函數(shù)時(shí),給出下面幾個(gè)結(jié)論中正確的有( )

A.的圖象關(guān)于點(diǎn)對(duì)稱(chēng)B.,則

C.的值域?yàn)?/span>D.函數(shù)有三個(gè)零點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案