把函數(shù)f(x)=
x-1
x+2
的圖象按向量
a
=(2,1)
平移后得到函數(shù)g(x)的圖象,又g(x)的反函數(shù)為g-1(x),則g-1(1)=( 。
A、3B、-3C、-1D、-7
分析:先依據(jù)向量的平移得出數(shù)g(x)的表達(dá)式,再利用互為反函數(shù)的兩個(gè)函數(shù)的函數(shù)值的對(duì)應(yīng)關(guān)系即可求得g-1(x)的值.
解答:解:把函數(shù)f(x)=
x-1
x+2
的圖象按向量
a
=(2,1)
平移后得到函數(shù)g(x)的表達(dá)式為:
g(x)=
x-3
x
+1

令g(x)=1,得
x-3
x
+1
=1,→x=3,
則g-1(1)=3,
故選A.
點(diǎn)評(píng):本題考查反函數(shù)的概念,函數(shù)圖象的變換,互為反函數(shù)的函數(shù)值的關(guān)系,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①集合A={ x|0≤x<3且x∈N }的真子集的個(gè)數(shù)是8;
②將三個(gè)數(shù):x=20.2,y=(
1
2
)2
,z=log2
1
2
按從大到小排列正確的是z>x>y;
③函數(shù)f(x)=x2+(3a+1)x+2a在 (-∞,4)上為減函數(shù),則實(shí)數(shù)a的取值范圍是a≤-3;
④已知函數(shù)y=4x-4•2x+1(-1≤x≤2),則函數(shù)的值域?yàn)閇-
3
4
,1];
⑤定義在(-1,0)的函數(shù)f(x)=log(2a)(x+1)滿足f(x)>0的實(shí)數(shù)a的取值范圍是0<a<
1
2
;
⑥關(guān)于x的一元二次方程x2+mx+2m+1=0一個(gè)根大于1,一個(gè)根小于1,則實(shí)數(shù)m的取值范圍m<-
2
3

其中正確的有
③⑤⑥
③⑤⑥
(請(qǐng)把所有滿足題意的序號(hào)都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把形如y=f(x
)
φ(x)
 
的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)法數(shù):在函數(shù)解析式兩邊求對(duì)數(shù)得lny=lnf(x
)
φ(x)
 
=φ(x)lnf(x)
,兩邊對(duì)x求導(dǎo)數(shù),得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x
)
φ(x)
 
[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,運(yùn)用此方法可以求得函數(shù)y=
x
x
 
(x>0)
在(1,1)處的切線方程是
y=x
y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)已知冪函數(shù)g(x)=x-m2+2m+3(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù),又f(x)=sinx+mcosx,F(xiàn)(x)=f′(x)[f(x)+f′(x)]-1,f′(x)是f(x)的導(dǎo)函數(shù).
(I)若tanx=
13
,求F(x)的值;
(Ⅱ)把F(x)圖象的橫坐標(biāo)縮小為原來的一半后得到H(x),求H(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把函數(shù)f(x)連續(xù)進(jìn)行n次求導(dǎo)后得到的函數(shù),稱為函數(shù)f(x)的n階導(dǎo)函數(shù),記為f(n)(x)(其中n∈N+).比如:若f(x)=x3,則f(2)(x)=6x.現(xiàn)給出下列函數(shù):①f(x)=ex;②f(x)=lnx;③f(x)=sinx;④f(x)=cosx;⑤f(x)=2.其中“?n∈N+,f(n)(x)=f(x)”的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案