已知數(shù)列,滿足,,且對(duì)任意的正整數(shù)均成等比數(shù)列.
(1)求、的值;
(2)證明:均成等比數(shù)列;
(3)是否存在唯一正整數(shù),使得恒成立?證明你的結(jié)論.

(1),;(2)詳見解析;(3)詳見解析.

解析試題分析:本題考查數(shù)列的求值,等比數(shù)列的證明和研究不等式的恒成立問題.(1)通過題設(shè)條件給出的數(shù)列關(guān)系,求出數(shù)列的初始值;(2)根據(jù)等比數(shù)列的定義,分別得到證明,其中應(yīng)說明第一項(xiàng)不為零;(3)探求是否存在唯一的正整數(shù)使得恒成立分兩步求解,先通過數(shù)列,的單調(diào)性得到,再證明證整數(shù)時(shí)唯一的,求解有關(guān)數(shù)列的綜合問題,主要是要明確解題方向,合理利用數(shù)列的相關(guān)性質(zhì)化難為易,化繁為簡(jiǎn),同時(shí)還要注意解題步驟的規(guī)范性和嚴(yán)謹(jǐn)性.
試題解析:(1)依題意,;
(2)證明:依題意,對(duì)任意正整數(shù),即,
,
,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,
,又,
數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.
(3)由(2)得,解得,顯然,數(shù)列是單調(diào)遞增的數(shù)列,是單調(diào)遞減的數(shù)列,即存在正整數(shù),使得對(duì)任意的,有,
又令,而,,
,解得,即對(duì)任意的時(shí),,
正整數(shù)也是唯一的.
綜上所述,存在唯一的正整數(shù),使得對(duì)任意的,有.
考點(diǎn):等差數(shù)列、等比數(shù)列的性質(zhì),數(shù)列不等式的恒成立問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,數(shù)列滿足:。
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式;(3)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,,,是數(shù)列的前項(xiàng)和.
(1)若數(shù)列為等差數(shù)列.
(。┣髷(shù)列的通項(xiàng);
(ⅱ)若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項(xiàng)和項(xiàng)和的大;
(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)已知數(shù)列為首項(xiàng)為1的等差數(shù)列,其公差,且成等比數(shù)列.
(1)求的通項(xiàng)公式; 
(2)設(shè),數(shù)列的前項(xiàng)和,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,,.
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)在數(shù)列中,是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng);若不存在,請(qǐng)說明理由;
(3)若,,求證:使得,成等差數(shù)列的點(diǎn)列在某一直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知無窮數(shù)列的前項(xiàng)和為,且滿足,其中、是常數(shù).
(1)若,,,求數(shù)列的通項(xiàng)公式;
(2)若,且,求數(shù)列的前項(xiàng)和;
(3)試探究、滿足什么條件時(shí),數(shù)列是公比不為的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)集合W是滿足下列兩個(gè)條件的無窮數(shù)列的集合:①對(duì)任意,恒成立;②對(duì)任意,存在與n無關(guān)的常數(shù)M,使恒成立.
(1)若是等差數(shù)列,是其前n項(xiàng)和,且試探究數(shù)列與集合W之間的關(guān)系;
(2)設(shè)數(shù)列的通項(xiàng)公式為,且,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為,且,.
(1)求;(2)設(shè)數(shù)列滿足,求的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案