8.已知函數(shù)f(x)是偶函數(shù),且當(dāng)x>0時,f(x)=x3+x+1,則當(dāng)x<0時,f(x)的解析式為f(x)=-x3-x+1.

分析 設(shè)x<0,則-x>0,利用x>0時,函數(shù)的解析式,求出 f(-x)的解析式,再利用偶函數(shù)的定義求即得x<0時的解析式.

解答 解:由題意,設(shè)x<0,則-x>0,
∵x>0時的解析式為f(x)=x3+x+1,
∴f(-x)=-x3-x+1,
∵f(x)是偶函數(shù),
∴f(x)=-x3-x+1.
故答案為:f(x)=-x3-x+1.

點評 本題的考點是函數(shù)奇偶性的性質(zhì),主要考查偶函數(shù)的定義,求函數(shù)的解析式,應(yīng)掌握求哪設(shè)哪.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{x,-1≤x<0}\\{{x}^{2},0≤x<1}\end{array}\right.$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$.則方程f(x)=g(x)在區(qū)間[-3,7]上的所有實數(shù)根之和最接近下列哪個數(shù)( 。
A.10B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)當(dāng)x>3時,求函數(shù)y=$\frac{2{x}^{2}}{x-3}$的最小值.
(2)若x2-2ax+2≥0在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若(1-ax)5的展開式中含有x3的系數(shù)為-80,則實數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)l,m是不同的直線,α,β,γ是不同的平面,則下列命題正確的是②.
①若l⊥m,m⊥α,則l⊥α或 l∥α          
②若l⊥γ,α⊥γ,則l∥α或 l?α
③若l∥α,m∥α,則l∥m或 l與m相交    
④若l∥α,α⊥β,則l⊥β或 l?β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題為真命題的是(  )
A.橢圓的離心率大于1
B.雙曲線$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=-1的焦點在x軸上
C.?x∈R,sinx+cosx=$\frac{7}{5}$
D.?a,b∈R,$\frac{a+b}{2}$≥$\sqrt{ab}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線x-2y+2=0與圓C:x2+y2-4y+m=0相交,截得的弦長為$\frac{2\sqrt{5}}{5}$.
(1)求圓C的方程;
(2)過原點O作圓C的兩條切線,與函數(shù)y=x2的圖象相交于M、N兩點(異于原點),證明:直線MN與圓C相切;
(3)若函數(shù)y=x2圖象上任意三個不同的點P、Q、R,且滿足直線PQ和PR都與圓C相切,判斷線QR與圓C的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列各組中兩個函數(shù)是同一函數(shù)的是(  )
A.f(x)=$\root{4}{{x}^{4}}$與g(x)=($\root{4}{x}$)4B.f(x)=x與g(x)=$\root{3}{{x}^{3}}$
C.f(x)=lnex與g(x)=elnxD.f(x)=$\frac{{x}^{2}-4}{x+2}$ 與g(x)=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列區(qū)間使函數(shù)y=sin($\frac{3π}{2}$-x)是單調(diào)遞減函數(shù)的是( 。
A.[-$\frac{3π}{2}$,$\frac{π}{2}$]B.[0,$\frac{π}{2}$]C.[-$\frac{π}{2}$,$\frac{π}{2}$]D.[-$\frac{π}{2}$,0]

查看答案和解析>>

同步練習(xí)冊答案