已知函數(shù)f(x)=3x,且f-1(18)=a+2,g(x)=3ax-4x的定義域為[0,1].
(1)求g(x)的解析式;
(2)求g(x)的單調區(qū)間,確定其單調性并用定義證明;
(3)求g(x)的值域.
分析:(1)先由函數(shù)f(x)=3x且f-1(18)=a+2解出3a的值,整體代入g(x)=3ax-4x中得到g(x)=2x-4x,
(2)對g(x)=2x-4x求導,用導數(shù)判斷函數(shù)在[-1,1]上的單調性;
(3)由(2)的結論根據(jù)其單調性求值域.
解答:解:(1)∵f(x)=3x且f(a+2)=3a+2=18,
∴3a=2.
∴g(x)=3ax-4x=(3a)x-4x,
∴g(x)=2x-4x.
(2)∵函數(shù)g(x)的定義域為[0,1],令t=2x,
∵x∈[0,1],函數(shù)t在區(qū)間[0,1]上單調遞增,
且t∈[1,2],則g(x)=t-t2在[1,2]上單調遞減,
∴g(x)在[0,1]上單調遞減.
證明如下:設x1,x2∈[0,1]且x1<x2,則
g(x2)-g(x1)
=2x2-4x2-2x1+4x1=(2x2-2x1)(1-2x2-2x1)
∵0≤x1<x2≤1,
∴2x2>2x1,
且1≤2x1<2,1<2x2≤2.
∴2<2x1+2x2<4.
∴-3<1-2x1-2x2<-1,可知(2x2-2x1)•(1-2x2-2x1)<0.
∴g(x2)<g(x1).
∴函數(shù)g(x)在[0,1]上為減函數(shù).
(3)∵g(x)在[0,1]上為減函數(shù),
又x∈[0,1],
故有g(1)≤g(x)≤g(0).
∵g(1)=-2,g(0)=0,
∴函數(shù)g(x)的值域為[-2,0].
點評:本題的考點是指數(shù)函數(shù)單調性的應用,考查運用指數(shù)函數(shù)的單調性求值域,合理的正確的轉化是求解成功的關鍵.