分析 由題意可得:k=${A}_{3}^{3}•{A}_{2}^{2}$=12.再利用$(1-\frac{x}{12})^{12}$的展開式的通項公式即可得出.
解答 解:由題意可得:k=${A}_{3}^{3}•{A}_{2}^{2}$=12.
則$(1-\frac{x}{12})^{12}$的展開式的通項公式:Tr+1=${∁}_{12}^{r}$$(-\frac{x}{12})^{r}$=$(-\frac{1}{12})^{r}$${∁}_{12}^{r}$xr,
令r=2,則展開式中含x2項的系數(shù)為:$\frac{1}{1{2}^{2}}×\frac{12×11}{2}$=$\frac{11}{24}$.
故答案為:$\frac{11}{24}$.
點評 本題考查了二項式定理的展開式、排列的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k2-e2>1 | B. | k2-e2<1 | C. | e2-k2>1 | D. | e2-k2<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,0)∪(2,+∞) | B. | (-2,0)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-∞,-2)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}-1}{2}$ | C. | $\frac{{3+\sqrt{5}}}{2}$ | D. | $\frac{{3-\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 周期為π的奇函數(shù) | B. | 周期為π的偶函數(shù) | ||
C. | 周期為$\frac{π}{2}$的奇函數(shù) | D. | 周期為$\frac{π}{2}$的偶函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com