已知命題p:方程
x2
k-4
+
y2
k-6
=1
表示雙曲線;命題q:過點(diǎn)M(2,1)的直線與橢圓
x2
5
+
y2
k
=1
恒有公共點(diǎn),若p與q中有且僅有一個(gè)為真命題,求k的取值范圍.
∵命題p:方程
x2
k-4
+
y2
k-6
=1
表示雙曲線,
∴(k-4)(k-6)<0,解得4<k<6
∵命題q:過點(diǎn)M(2,1)的直線與橢圓
x2
5
+
y2
k
=1
恒有公共點(diǎn),
∴M在橢圓內(nèi),即
22
5
+
12
k
<1,且k>0,解得k>5
∵p與q中有且僅有一個(gè)為真命題,
∴p真q假,或p假q真
當(dāng)p真q假時(shí),
4<k<6
k≤5
,解得4<k≤5;
當(dāng)p假q真時(shí),
k≤4或k≥6
k>5
,解得k≥6.
綜上取并集,得k的取值范圍{k|4<k≤5或k≥6}.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知有公共焦點(diǎn)的橢圓與雙曲線的中心為原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2且它們?cè)诘谝幌笙薜慕稽c(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形,雙曲線的離心率的取值范圍為(1,2),則該橢圓的離心率的取值范圍是( 。
A.(0,
1
3
B.(
1
3
,
1
2
C.(
1
3
,
2
5
D.(
2
5
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)為F,C為橢圓短軸上的端點(diǎn),向量
FC
繞F點(diǎn)順時(shí)針旋轉(zhuǎn)90°后得到向量
FC′
,其中C′
點(diǎn)恰好落在橢圓右準(zhǔn)線上,則該橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn)為F1(-c,0)、F2(c,0),M是橢圓上一點(diǎn),且滿足
F1M
F2M
=0

(1)求離心率e的取值范圍;
(2)當(dāng)離心率e取得最小值時(shí),點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為5
2
,求此時(shí)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y2=4x的焦點(diǎn)F與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)焦點(diǎn)重合,它們?cè)诘谝幌笙迌?nèi)的交點(diǎn)為T,且TF與x軸垂直,則橢圓的離心率為( 。
A.
3
-
2
B.
2
-1
C.
1
2
D.
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程
x2
m2
+
y2
2+m
=1
表示焦點(diǎn)在y軸上的橢圓,則m的范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)的坐標(biāo)是(0,1),離心率等于
2
5
5

(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C的右焦點(diǎn)F作直線l交橢圓C于A,B兩點(diǎn),交y軸于M點(diǎn),若
MA
=λ1
AF
,
MB
=λ2
BF
,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知定點(diǎn)N(1,0),動(dòng)點(diǎn)A、B分別在圖中拋物線y2=4x及橢圓
x2
4
+
y2
3
=1
的實(shí)線部分上運(yùn)動(dòng),且ABx軸,則△NAB的周長(zhǎng)L的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,線段F1F2被拋物線y2=2bx的焦點(diǎn)分成7∶5的兩段,則此雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案