【題目】設(shè),為正項(xiàng)數(shù)列的前n項(xiàng)和,且.數(shù)列滿足:,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
【答案】(1) ;(2).
【解析】
(1)n=1時,解得a1=1,n≥2時,an﹣an﹣1=1,由此求出數(shù)列{an}是以1為首項(xiàng),1為公差的等差數(shù)列,從而an的通項(xiàng)公式,由已知得{bn}是首項(xiàng)為3,公比為3的等比數(shù)列,從而的通項(xiàng)公式;
(2)利用錯位相減法能求出數(shù)列{cn}的前n項(xiàng)和Tn.
解:(1)n=1時,2S1=2 a1=a12+a1,
a12﹣a1=0,解得a1=0(各項(xiàng)均為正數(shù),舍去)或a1=1,
n≥2時,
2Sn=an2+an,
2Sn﹣1=an﹣12+an﹣1,
2Sn﹣2Sn﹣1=2an=an2+an﹣an﹣12﹣an﹣1
an2﹣an﹣12﹣an﹣an﹣1=0
(an+an﹣1)(an﹣an﹣1﹣1)=0
∵數(shù)列各項(xiàng)均為正,∴an﹣an﹣1=1,
∴數(shù)列{an}是以1為首項(xiàng),1為公差的等差數(shù)列.
∴an=1+n﹣1=n.
∵數(shù)列{bn}滿足b1=2,bn+1=3bn+2(n≥2,n∈N *),
∴
∴{}是首項(xiàng)為3,公比為的等比數(shù)列,
∴.
(2)由(1)可知:cn=anbn=n,
∴Tn=3+23,①
3Tn,②
①﹣②,得:3
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐A﹣BCD的所有棱長均相等,E為DC的中點(diǎn),若點(diǎn)P為AC中點(diǎn),則直線PE與平面BCD所成角的正弦值為_____,若點(diǎn)Q在棱AC所在直線上運(yùn)動,則直線QE與平面BCD所成角正弦值的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】物價監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價格的合理性,對某公司的該產(chǎn)品的銷量與價格進(jìn)行了統(tǒng)計(jì)分析,得到如下數(shù)據(jù)和散點(diǎn)圖:
定價x(元/kg) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量y(kg) | 1150 | 643 | 424 | 262 | 165 | 86 |
z=21ny | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
(參考數(shù)據(jù):,,
,)
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y與x和z與x哪一對具有的線性相關(guān)性較強(qiáng)(給出判斷即可,不必說明理由)?
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及數(shù)據(jù),建立y關(guān)于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是
A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需要的時間至少80分鐘
B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高
C. 這40名工人完成任務(wù)所需時間的中位數(shù)為80
D. 無論哪種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需要的時間都是80分鐘.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓的圓心在軸的正半軸上,與軸相交于點(diǎn),且直線被圓截得的弦長為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與圓交于兩點(diǎn),那么以為直徑的圓能否經(jīng)過原點(diǎn),若能,請求出直線的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為菱形且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=,E為PC的中點(diǎn).
(1)求直線DE與平面PAC所成角的大;
(2)求二面角E-AD-C平面角的正切值;
(3)在線段PC上是否存在一點(diǎn)M,使PC⊥平面MBD成立.如果存在,求出MC的長;如果不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,∠ABC=,D是棱AC的中點(diǎn),且AB=BC=BB1=2.
(1)求證:AB1∥平面BC1D;
(2)求異面直線AB1與BC1的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.首屆中國國際進(jìn)口博覽會的某展館棚頂一角的鋼結(jié)構(gòu)可以抽象為空間圖形陽馬.如圖所示,在陽馬中,底面.
(1)若,斜梁與底面所成角為,求立柱的長(精確到);
(2)證明:四面體為鱉臑;
(3)若,,,為線段上一個動點(diǎn),求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com