已知數(shù)列{bn}是等差數(shù)列, b1="1," b1+b2+b3+…+b10=100.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{an}的通項記Tn是數(shù)列{an}的前n項之積,即Tn= b1·b 2·b 3…bn,試證明:
Ⅰ)設(shè)等差數(shù)列{bn}的公差為d,則,得d=2,
……………………………2分
(Ⅱ)
,命題得證                          …4分


……………10分

即n=k+1時命題成立
  
(1)根據(jù)等差數(shù)列求和公式求出公差,(2)求出Tn利用數(shù)學(xué)歸納法進行證明
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列的前n項和。
(1)求證:數(shù)列是等比數(shù)列,并求的通項公式;
(2)如果對任意恒成立,求實數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且-1,,數(shù)列,……,是首項為1,公比為的等比數(shù)列。
(I)求證:數(shù)列{an}是等差數(shù)列;
(II)若,求數(shù)列{cn}的前n項和Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列中,,
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求數(shù)列的前項和;
(Ⅲ)(理科)若存在,使得成立,求實數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列為等比數(shù)列,是它的前項和,若  ,
的等差中項為,則(   )
A.35B.33C.31D.29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列為等差數(shù)列,為其前n項和,且,則=
A.25B.27C.50D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列{an}中,已知a1,a2+a5=4,an=33,則n為(    )
A.50B.49
C.48D.47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若等差數(shù)列的前5項和,且,則(   )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

兩千多年前,古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問題,他們在沙灘上畫點或用小石子來表示數(shù),按照點或小石子能排列的形狀對數(shù)進行分類,如圖2中的實心點個數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個五角形數(shù)記作,第2個五角形數(shù)記作,第3個五角形數(shù)記作,第4個五角形數(shù)記作,…,若按此規(guī)律繼續(xù)下去,則  ,若,則  

 

查看答案和解析>>

同步練習冊答案