已知△ABC內(nèi)角A、B、C的對(duì)邊分別是a、b、c,若cosB=
1
4
,b=2,sinC=2sinA,則△ABC的面積為(  )
A、
15
6
B、
15
4
C、
15
2
D、
15
考點(diǎn):正弦定理
專題:解三角形
分析:由題意和正余弦定理可得a,c的值,由同角三角函數(shù)的基本關(guān)系可得sinB,代入三角形的面積公式計(jì)算可得.
解答: 解:∵sinC=2sinA,
∴由正弦定理可得c=2a,
又cosB=
1
4
,b=2,
由余弦定理可得22=a2+(2a)2-2a•2a×
1
4

解得a=1,∴c=2,
又cosB=
1
4
,∴sinB=
1-cos2B
=
15
4

∴△ABC的面積S=
1
2
acsinB=
1
2
×1×2×
15
4
=
15
4

故選:B
點(diǎn)評(píng):本題考查三角形的面積,涉及正余弦定理的應(yīng)用,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a≤1,x∈(-∞,a],則函數(shù)f(x)=x2-2x+a的值( 。
A、[a-1,+∞)
B、[-a,+∞)
C、[a2-a,+∞)
D、[a2-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)體積為10的空間幾何體的三視圖,則圖中x的值為(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①△ABC的三邊分別為a,b,c,則該三角形是等邊三角形的充要條件為a2+b2+c2=ab+ac+bc;
②數(shù)列{an}的前n項(xiàng)和為Sn,則Sn=An2+Bn是數(shù)列{an}為等差數(shù)列的必要不充分條件;
③在△ABC中,A=B是sin A=sin B的充分必要條件;
④已知a1,b1,c1,a2,b2,c2都是不等于零的實(shí)數(shù),關(guān)于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分別為P,Q,
a1
a2
=
b1
b2
=
c1
c2
是P=Q的充分必要條件,其中正確的命題是( 。
A、①④B、①②③
C、②③④D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2c•cosB=2a+b,若△ABC的面積為S=
3
2
c,則ab的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x),若成立f(x)+2f(
1
1-x
)=x,那么f(2)的值是(  )
A、2
B、
1
2
C、
2
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x•lg(x+2)-1的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}共有m項(xiàng),記{an}所有項(xiàng)的和為S(1),第二項(xiàng)及以后所有項(xiàng)的和為S(2),第三項(xiàng)及以后所有項(xiàng)的和為S(3),…,第n項(xiàng)及以后所有項(xiàng)的和為S(n).若S(n)是首項(xiàng)為1,公差為2的等差數(shù)列的前n項(xiàng)和,則當(dāng)n<m時(shí),an=(  )
A、4n-7B、-2n+1
C、-3nD、-2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列不等式一定成立的是( 。
A、lg(x2+
1
4
)>lgx(x>0)
B、
x2+5
x2+4
≥2
C、x2+1≥2|x|(x∈R)
D、
1
x2+1
>1(x∈R)

查看答案和解析>>

同步練習(xí)冊(cè)答案