y=f(x)是R上的奇函數(shù),且在定義域內(nèi)為增函數(shù),若f(
1
2
)=1,則不等式-1<f(log4x)<0的解集為
 
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系結(jié)合對(duì)數(shù)的性質(zhì)即可得到結(jié)論.
解答: 解:∵y=f(x)是R上的奇函數(shù),f(
1
2
)=1,
∴f(-
1
2
)=-f(
1
2
)=-1,f(0)=0,
則不等式-1<f(log4x)<0等價(jià)為f(-
1
2
)<f(log4x)<f(0),
∵f(x)在定義域內(nèi)為增函數(shù),
∴-
1
2
<log4x<0,
解得
1
2
<x<1,
即不等式的解集為(
1
2
,1),
故答案為:(
1
2
,1)
點(diǎn)評(píng):本題主要考查不等式的求解,利用函數(shù)奇偶性和單調(diào)性的性質(zhì)進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四面體ABCD中,CB=CD,AD⊥BD,點(diǎn)E,F(xiàn)分別是AB,BD的中點(diǎn).
求證:
(Ⅰ)直線EF∥平面ACD;
(Ⅱ)平面EFC⊥平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在定義域D內(nèi)的函數(shù)y=f(x),若對(duì)任意的x1、x2∈D,都有|f(x1)-f(x2)|<1,則稱函數(shù)y=f(x)為“Storm函數(shù)”.已知函數(shù)f(x)=x3-x+a(x∈[-1,1],a∈R).
(1)若a=2,求過(guò)點(diǎn)(1,2)處的切線方程;
(2)函數(shù)f(x)是否為“Storm函數(shù)”?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=2,a2=3,2an+1=3an-an-1(n≥2),
(Ⅰ)求證:數(shù)列{an+1-an}為等比數(shù)列;
(Ⅱ)求使不等式
an-m
an+1-m
2
3
成立的所有正整數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg(1-x)+lg(1+x)+x4-2x2
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列五個(gè)命題:
①函數(shù)y=tan(
x
2
-
π
6
)的對(duì)稱中心是(2kπ+
π
3
,0)(k∈Z).
②終邊在y軸上的角的集合是{α|α=
2
,k∈Z}.
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn).
④把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象.
⑤函數(shù)y=sin(x-
π
2
)在[0,π]上是減少的.
其中,正確命題的序號(hào)是
 
.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A
 
?
{1,2,3},且A中至少含有一個(gè)奇數(shù),則這樣的集合有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|log 
1
2
x≥3},B={x|x≥a},若A⊆B,則實(shí)數(shù)a的取值范圍是(-∞,c),其中的c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(4,0)、B(2,2)是橢圓
x2
25
+
y2
9
=1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),則|MA|+|MB|的最大值為
 
;最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案