10.直線y=kx-k與拋物線y2=4x交于A,B兩點(diǎn),若|AB|=4,則弦AB的中點(diǎn)到y(tǒng)軸的距離為( 。
A.$\frac{3}{4}$B.1C.2D.$\frac{4}{3}$

分析 確定拋物線的準(zhǔn)線方程,利用拋物線的定義及弦長(zhǎng),可得弦AB的中點(diǎn)到準(zhǔn)線的距離,進(jìn)而可求弦AB的中點(diǎn)到y(tǒng)軸的距離.

解答 解:由題意,直線y=kx-k恒過(guò)(1,0),
拋物線y2=4x的焦點(diǎn)坐標(biāo)為(1,0),準(zhǔn)線方程為x=-1,
根據(jù)拋物線的定義,∵|AB|=4,∴A、B到準(zhǔn)線的距離和為4,
∴弦AB的中點(diǎn)到準(zhǔn)線的距離為2
∴弦AB的中點(diǎn)到y(tǒng)軸的距離為2-1=1
故選:B.

點(diǎn)評(píng) 本題考查拋物線的定義,考查學(xué)生的計(jì)算能力,正確運(yùn)用拋物線的定義是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.一個(gè)總體中有60個(gè)個(gè)體,隨機(jī)編號(hào)為0,1,2,…59,依編號(hào)順序平均分成6個(gè)小組,組號(hào)依次為1,2,3,…6.現(xiàn)用系統(tǒng)抽樣方法抽取一個(gè)容量為6的樣本,若在第1組隨機(jī)抽取的號(hào)碼為3,則在第5組中抽取的號(hào)碼是( 。
A.33B.43C.53D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.非齊次線性方程組AX=B的解向量是ξ1,ξ2,…ξt,若k1ξ1+k2ξ2+…+ktξt也是AX=B的解,則k1+k2+…+kt=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在吸煙與患肺病這兩個(gè)分類(lèi)變量的計(jì)算中,下列說(shuō)法正確的是(  )
A.若Χ2的觀測(cè)值為6.64,而P(Χ2≥6.64)=0.010,故我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病
B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說(shuō)某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推判出現(xiàn)錯(cuò)誤
D.以上三種說(shuō)法都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某校為了研究“學(xué)生的性別”和“對(duì)待某項(xiàng)運(yùn)動(dòng)的喜愛(ài)程度”是否有關(guān),運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算k=6.669,則認(rèn)為“學(xué)生性別與支持活動(dòng)有關(guān)系”的犯錯(cuò)誤的概率不超過(guò)(  )
附:
P(K2≥k00.1000.0500.0250.0100.001
k02.706 3.8415.0246.63510.828
A.0.1%B.1%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC⊥平面SBC.
(Ⅰ)求$\frac{SE}{EB}$的值;
(Ⅱ)求二面角A-DE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知:f(x)=$\sqrt{{x}^{2}+2}$,正項(xiàng)數(shù)列{an}中,a1=2,an+1=f(an),數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足an2=2n+1bn
(1)求{bn}的通項(xiàng)公式
(2)若不等式設(shè)2n•Sn>m•2n-2an2對(duì)?n∈N+恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在正三棱柱ABC-A1B1C1中,點(diǎn)D、E分別為BC、B1C1的中點(diǎn),且AB=AA1=2.
(1)求證:A1E⊥C1D;
(2)求證:A1E∥平面AC1D;
(3)求直線AC1與平面BCC1B1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知復(fù)數(shù)z滿足$\frac{1-i}{z-2}$=1+i,則在復(fù)平面內(nèi),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案