設(shè)數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,其前項(xiàng)和為,且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)記的前項(xiàng)和為,求.
(1)(2)
解析試題分析:(1)由成等差數(shù)列得,,可解得,用等差的通項(xiàng)公式可得。(2)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/67/f/1pcln3.png" style="vertical-align:middle;" />等于等差成等比的形式,所以求其前項(xiàng)和應(yīng)用錯(cuò)位相減法,即寫出的式子后,將式子兩邊同乘以通項(xiàng)公式中的等比數(shù)列的公比即可,但須往后錯(cuò)一位寫出其式子,然后兩式相減計(jì)算即可。
試題解析:解:(1)∵,,, 2分
由成等差數(shù)列得,,
即, 3分
解得,故; 6分
(2),
, ① ①得,
② 8分
①②得,
10分
∴. 12分
考點(diǎn):1等差中項(xiàng);2等差的通項(xiàng)公式;3錯(cuò)位相減法求數(shù)列的前項(xiàng)和。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前n項(xiàng)和記為,點(diǎn)(n,)在曲線()上
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項(xiàng)和為,,,等差數(shù)列滿足,.
(1)求數(shù)列,數(shù)列的通項(xiàng)公式;
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
各項(xiàng)均為正數(shù)的數(shù)列{an}中,設(shè),,且,.
(1)設(shè),證明數(shù)列{bn}是等比數(shù)列;
(2)設(shè),求集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)正整數(shù)數(shù)列滿足:,且對(duì)于任何,有.
(1)求,;
(2)求數(shù)列的通項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和Sn=2n2+2n,數(shù)列{bn}的前n項(xiàng)和Tn=2-bn.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn=·bn,證明:當(dāng)且僅當(dāng)n≥3時(shí),cn+1<cn..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知Sn是數(shù)列{an}的前n項(xiàng)和,且an=Sn-1+2(n≥2),a1=2.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整數(shù)k,使得
對(duì)于任意的正整數(shù)n,有Tn>恒成立?若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和滿足,又,.
(1)求實(shí)數(shù)k的值;
(2)問數(shù)列是等比數(shù)列嗎?若是,給出證明;若不是,說明理由;
(3)求出數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-a,n∈N*.設(shè)公差不為零的等差數(shù)列{bn}滿足:b1=a1+2,且b2+5,b4+5,b8+5成等比數(shù)列.
(Ⅰ)求a的值及數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{logan}的前n項(xiàng)和為Tn.求使Tn>bn的最小正整數(shù)n.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com