【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù),且

1)求a的值;

2)求證:在定義域上是減函數(shù).

3)解關(guān)于實(shí)數(shù)的不等式

【答案】1 2)證明見(jiàn)解析 3

【解析】

1)由函數(shù)是定義域?yàn)?/span>R的奇函數(shù),得到,即可求解;

2)利用函數(shù)的單調(diào)的定義,即可證得函數(shù)在定義域上是減函數(shù);

3)利用函數(shù)是奇函數(shù),把不等式轉(zhuǎn)化為,再利用函數(shù)的定義域和單調(diào)性,列出不等式組,即可求解.

1)由題意,函數(shù)是定義域?yàn)?/span>R的奇函數(shù),所以

,所以

經(jīng)檢驗(yàn)時(shí),函數(shù)是奇函數(shù),所以.

2)由于,所以,即,

設(shè)

,

因?yàn)?/span>且函數(shù)在定義域上遞增,

可得,,所以,

所以,即,

所以上的減函數(shù).

3)由于函數(shù)是奇函數(shù),所以,

所以,轉(zhuǎn)化成,

則滿足,解得,即不等式的解集為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>,且對(duì)任意,有,且當(dāng)時(shí),,

(Ⅰ)證明是奇函數(shù);

(Ⅱ)證明上是減函數(shù);

(III)若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列集合中表示同一集合的是( )

A.,B.

C.,D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二項(xiàng)式展開(kāi)式中各項(xiàng)系數(shù)之和比各二項(xiàng)式系數(shù)之和大240,

(1)求;(2)求展開(kāi)式中含項(xiàng)的系數(shù);(3)求展開(kāi)式中所有含的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A{x|2x2ax20},B{x|x23x2a0},且AB{2}

(1)a的值及集合AB;

(2)設(shè)全集UAB,求(UA)(UB);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某學(xué)校準(zhǔn)備修建一個(gè)面積為2400平方米的矩形活動(dòng)場(chǎng)地(圖中ABCD)的圍欄,按照修建要求,中間用圍墻EF隔開(kāi),使得ABEF為矩形,EFCD為正方形,設(shè)米,已知圍墻(包括EF)的修建費(fèi)用均為每米500元,設(shè)圍墻(包括EF)的修建總費(fèi)用為y元.

(1)求出y關(guān)于x的函數(shù)解析式及x的取值范圍;

(2)當(dāng)x為何值時(shí),圍墻(包括EF)的修建總費(fèi)用y最小?并求出y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中an= (n∈N*),將數(shù)列{an}中的整數(shù)項(xiàng)按原來(lái)的順序組成數(shù)列{bn},則b2018的值為(
A.5035
B.5039
C.5043
D.5047

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中an= (n∈N*),將數(shù)列{an}中的整數(shù)項(xiàng)按原來(lái)的順序組成數(shù)列{bn},則b2018的值為(
A.5035
B.5039
C.5043
D.5047

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,兩點(diǎn)的極坐標(biāo)分別為.

(1)求圓的普通方程和直線的直角坐標(biāo)方程;

(2)點(diǎn)是圓上任一點(diǎn),求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案