相關習題
 0  364149  364157  364163  364167  364173  364175  364179  364185  364187  364193  364199  364203  364205  364209  364215  364217  364223  364227  364229  364233  364235  364239  364241  364243  364244  364245  364247  364248  364249  364251  364253  364257  364259  364263  364265  364269  364275  364277  364283  364287  364289  364293  364299  364305  364307  364313  364317  364319  364325  364329  364335  364343  366461 

科目: 來源: 題型:

【題目】1)已知:如圖1AB的直徑,點P上一點(且點P不與A、B重合)連接PA,PB的角平分線PC于點C.

①若,求AB的長

②求證:

2)如圖2,在正方形ABCD中,,若點P滿足,且,請直接寫出點BAP的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點OAC、BD的長()是方程的兩個根.P從點A出發(fā),以每秒1個單位的速度沿A→O→B→A的方向運動,運動時間為t(秒).

1)求ACBD的長;

2)求當AP恰好平分時,點P運動時間t的值;

3)在運動過程中,是否存在點P,使是等腰三角形?若存在,請求出運動時間t的值:若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀下面的材料,回答問題:

解方程,這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:設,那么,于是原方程可變?yōu)?/span>①,解得.

時,,∴

時,,∴

∴原方程有四個根:,,.

1)在由原方程得到方程①的過程中,利用________法達到________的目的,體現(xiàn)了數(shù)學的轉(zhuǎn)化思想.

2)解方程.

3)已知非零實數(shù)ab滿足,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】商場某種商品平均每天可銷售40件,每件盈利50元,為了減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2.

1)若某天該商品每件降價a元,當天可賣多少件?

2)在上述銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2400元?

3)每件商品降價多少元時,商場日盈利最大?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,,.

1)經(jīng)過A、BC三點的圓弧所在圓的圓心M的坐標為________.

2)點D坐標為,連接CD,判斷直線CD與⊙M的位置關系并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,點O斜邊AB上的一點,以OA為半徑的BC切于點D,與AC交于點E,連接AD.

1)求證:AD平分

2)若,,求陰影部分的面積.(結(jié)果保留

查看答案和解析>>

科目: 來源: 題型:

【題目】關于x的一元二次方程(m-1)x2-x-2=0,

(1)若x=-1是方程的一個根,求m的值及另一個根;

(2)當m為何值時方程有兩個不同的實數(shù)根.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y軸于點A,交x軸于點B,點C在線段OA上,點D在線段OB上,且,點C、D不與點O重合,以CD為直徑的圓交直線AB于兩點EF,連接OE、OF,則當的面積的最大時,線段EF的長是________.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平行四邊形中,,,且于點,點分別是邊上的動點,且.

①求證:四邊形是平行四邊形;

②當為何值時,四邊形是矩形?

查看答案和解析>>

科目: 來源: 題型:

【題目】下圖為某小區(qū)的兩幢1O層住宅樓,由地面向上依次為第1層、第2層、…、第10層,每層的高度為3m,兩樓間的距離AC=30m.現(xiàn)需了解在某一時段內(nèi),甲樓對乙樓的采光的影響情況.假設某一時刻甲樓樓頂B落在乙樓的影子長EC=h,太陽光線與水平線的夾角為α.

(1)用含α的式子表示h;

(2)當α=30°時,甲樓樓頂B的影子落在乙樓的第幾層?從此時算起,若α每小時增加10°,幾小時后,甲樓的影子剛好不影響乙樓采光.

查看答案和解析>>

同步練習冊答案