【題目】已知數(shù)列 的通項公式是 ,那么這個數(shù)列是(
A.遞增數(shù)列
B.遞減數(shù)列
C.常數(shù)列
D.擺動數(shù)列

【答案】A
【解析】解答: =1- ,隨著n的增大而增大.故選:A.分析:數(shù)列的分類
按項之間的大小關(guān)系:遞增數(shù)列,遞減數(shù)列,擺動數(shù)列,常數(shù)列.
遞增數(shù)列:從第2項起,每一項都大于它的前一項的數(shù)列;
遞減數(shù)列:從第2項起,每一項都小于它的前一項的數(shù)列;
擺動數(shù)列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列;
常數(shù)列:各項都相等的數(shù)列.
【考點精析】根據(jù)題目的已知條件,利用數(shù)列的定義和表示的相關(guān)知識可以得到問題的答案,需要掌握數(shù)列中的每個數(shù)都叫這個數(shù)列的項.記作an,在數(shù)列第一個位置的項叫第1項(或首項),在第二個位置的叫第2項,……,序號為n的項叫第n項(也叫通項)記作an

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設(shè)分店的個數(shù), 表示這個個分店的年收入之和.

(個)

2

3

4

5

6

(百萬元)

2.5

3

4

4.5

6

(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程

(2)假設(shè)該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開設(shè)多少個分店時,才能使區(qū)平均每個店的年利潤最大?

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,2012年春節(jié),攝影愛好者在某公園處,發(fā)現(xiàn)正前方處有一立柱,測得立柱頂端的仰角和立柱底部的俯角均為,設(shè)的眼睛距地面的距離米.

(1)求攝影者到立柱的水平距離和立柱的高度;

(2)立柱的頂端有一長2米的彩桿繞其中點與立柱所在的平面內(nèi)旋轉(zhuǎn).攝影者有一視角范圍為的鏡頭,在彩桿轉(zhuǎn)動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=(1﹣m)lnx++nx(m,n是常數(shù)).

(1)若m=0,且f(x)在(1,2)上單調(diào)遞減,求n的取值范圍;

(2)若m>0,且n=﹣1,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果數(shù)列a1 , a2 , a3 , … , an , …是等差數(shù)列,那么下列數(shù)列中不是等差數(shù)列的是:(
A.a1+x , a2+x , a3+x , …,an+x ,
B.ka1 , ka2 , ka3 , …,kan ,
C.
D.a1 , a4 , a7 , …a3n2 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一列火車從重慶駛往北京,沿途有n個車站(包括起點站重慶和終點站北京).車上有一郵政車廂,每?恳徽颈阋断禄疖囈呀(jīng)過的各站發(fā)往該站的郵袋各1個,同時又要裝上該站發(fā)往以后各站的郵袋各1個,設(shè)從第k站出發(fā)時,郵政車廂內(nèi)共有郵袋ak個(k=1,2,…,n).
(1)求數(shù)列{ak}的通項公式;
(2)當k為何值時,ak的值最大,求出ak的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求上的單調(diào)區(qū)間;

(2)當時,求不等式的解集;

(3)當時,設(shè)函數(shù),求證:不等式在定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸、B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸、B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤5萬元、每噸乙產(chǎn)品可獲得利潤3萬元.該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸、B原料不超過18噸,那么該企業(yè)可獲得最大利潤是(
A.12萬元
B.20萬元
C.25萬元
D.27萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求直線yx被圓x2+(y-2)2=4截得的弦長;

(2)已知圓,求過點的圓的切線方程。

查看答案和解析>>

同步練習(xí)冊答案