A. | f′(x)>0,g′(x)>0 | B. | f′(x)>0,g′(x)<0 | C. | f′(x)<0,g′(x)<0 | D. | f′(x)<0,g′(x)>0 |
分析 判斷f(x),g(x)的奇偶性,由在(0,+∞)的單調(diào)性得出在(-∞,0)上的單調(diào)性.
解答 解:∵f(x)=f(|x|),g(-x)+g(x)=0,
∴f(-x)=f(x),g(-x)=-g(x),∴f(x)是偶函數(shù),g(x)是奇函數(shù).
∴f(x)在(-∞,0)和(0,+∞)上單調(diào)性相反,g(x)在(-∞,0)和(0,+∞)上單調(diào)性相同.
∵x>0時.f′(x)>0,g′(x)<0,
∴x<0時.f′(x)<0,g′(x)<0.
故選:C.
點評 本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a+1 | B. | a+$\frac{3}{4}$ | C. | a2+1 | D. | $\frac{3}{4}$-a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({0,\frac{4}{27}})$ | B. | $({0,\frac{4}{27}}]$ | C. | $({\frac{4}{27},\frac{2}{3}})$ | D. | $({\frac{4}{27},\frac{2}{3}}]$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com