【題目】已知點A是雙曲線的右頂點,若存在過點的直線與雙曲線的漸近線交于一點M,使得是以點M為直角頂點的直角三角形,則雙曲線的離心率( )
A.存在最大值B.存在最大值
C.存在最小值D.存在最小值
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側棱DE與四棱錐F﹣ABCD的側棱BF都與底面ABCD垂直,,//,.
(1)證明://平面BCE.
(2)設平面ABF與平面CDF所成的二面角為θ,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某品牌汽車4S店對最近100位采用分期付款的購車者進行統(tǒng)計,統(tǒng)計結果如下表所示:
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
頻數(shù) | 40 | 20 | 10 |
已知分3期付款的頻率為0.2,4s店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元,分2期或3期付款其利潤為1.5萬元,分4期或5期付款,其利潤為2萬元,用Y表示經(jīng)銷一輛汽車的利潤.
(Ⅰ)求上表中的值;
(Ⅱ)若以頻率作為概率,求事件:“購買該品牌汽車的3位顧客中,至多有一位采用3期付款”的概率;
(Ⅲ)求Y的分布列及數(shù)學期望EY.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“紅燈停,綠燈行”,這是我們每個人都應該也必須遵守的交通規(guī)則.湊齊一撥人就過馬路﹣﹣不看交通信號燈、隨意穿行交叉路口的“中國式過馬路”不僅不文明而且存在很大的交通安全隱患.一座城市是否存在“中國式過馬路”是衡量這座城市文明程度的重要指標.某調查機構為了了解路人對“中國式過馬路”的態(tài)度,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯(lián)表:
男性 | 女性 | 合計 | |
反感 | 10 | ||
不反感 | 8 | ||
合計 | 30 |
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.
(1)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結果,不需要寫求解過程),并據(jù)此列聯(lián)表數(shù)據(jù)判斷是否有95%的把握認為反感“中國式過馬路”與性別有關?
(2)若從這30人中的女性路人中隨機抽取2人參加一項活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列及其數(shù)學期望.
附:,其中n=a+b+c+d
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:
函數(shù)的最大值為1;
“,”的否定是“”;
若為銳角三角形,則有;
“”是“函數(shù)在區(qū)間內單調遞增”的充分必要條件.
其中錯誤的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1)經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:
A:所有芒果以10元/千克收購;
B:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,長軸長為4,且過點.
(1)求橢圓C的方程;
(2)過的直線l交橢圓C于兩點,過A作x軸的垂線交橢圓C與另一點Q(Q不與重合).設的外心為G,求證為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,該學校對100名高一新生進行了問卷調查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為.
(1)請將上述列聯(lián)表補充完整;
(2)并判斷是否有99.9%的把握認為喜歡游泳與性別有關?并說明你的理由;
(3)已知在被調查的學生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學生中隨機抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com