【題目】如圖,已知兩個城市、相距,現(xiàn)計劃在兩個城市之間合建一個垃圾處理廠,立即處理廠計劃在以為直徑的半圓弧上選擇一點建造(不能選在點、上),其對城市的影響度與所選地點到城市的距離有關(guān),對城和城的總影響度為城和城的影響度之和,記點到城的距離為(單位是),建在處的垃圾處理廠對城和城的總影響度為,統(tǒng)計調(diào)查表明:垃圾處理廠對城的影響度與所選地點到城的距離的平方成反比,比例系數(shù)為100,對城的影響度與所選地點到城的距離的平方成反比,比例系數(shù)為,當(dāng)垃圾處理廠建在上距離城20公里處時,對城和城的總影響度為.
(1)將表示成的函數(shù);
(2)求當(dāng)垃圾處理廠到、兩城市距離之和最大時的總影響度的值;
(3)求垃圾處理廠對城和城的總影響度的最小值,并求出此時的值.(計算結(jié)果均用精確值表示)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=x-(a+1)ln x-(a∈R),g (x)=x2+ex-xex.
(1)當(dāng)x∈[1,e] 時,求f (x)的最小值;
(2)當(dāng)a<1時,若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;
(2)已知函數(shù),,如果函數(shù)有兩個極值點、,求證:.(參考數(shù)據(jù):,,,為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知橢圓和拋物線有公共焦點F(1,0),的中心和的頂點都在坐標(biāo)原點,過點M(4,0)的直線與拋物線分別相交于A,B兩點.
(Ⅰ)寫出拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)若,求直線的方程;
(Ⅲ)若坐標(biāo)原點關(guān)于直線的對稱點在拋物線上,直線與橢圓有公共點,求橢圓的長軸長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運動比賽道,賽道的前一部分為曲線段FBC.該曲線段是函數(shù)時的圖象,且圖象的最高點為B賽道的中間部分為長千米的直線跑道CD,且CD∥EF;賽道的后一部分是以為圓心的一段圓弧DE.
(1)求的值和∠DOE的大。
(2)若要在圓弧賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個“矩形草坪”,矩形的一邊在道路EF上,一個頂點在半徑OD上,另外一個頂點P在圓弧DE上,求“矩形草坪”面積的最大值,并求此時P點的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南充高中扎實推進(jìn)陽光體育運動,積極引導(dǎo)學(xué)生走向操場,走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時間,采用簡單隨機(jī)抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時間分組統(tǒng)計如下表:
分組 | ||||||
男生人數(shù) | 2 | 16 | 19 | 18 | 5 | 3 |
女生人數(shù) | 3 | 20 | 10 | 2 | 1 | 1 |
若將平均每日參加體育鍛煉的時間不低于120分鐘的學(xué)生稱為“鍛煉達(dá)人”.
(1)將頻率視為概率,估計我校7000名學(xué)生中“鍛煉達(dá)人”有多少?
(2)從這100名學(xué)生的“鍛煉達(dá)人”中按性別分層抽取5人參加某項體育活動.
①求男生和女生各抽取了多少人;
②若從這5人中隨機(jī)抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的上下兩個焦點分別為,過點與軸垂直的直線交橢圓于兩點, 的面積為,橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知為坐標(biāo)原點,直線與軸交于點,與橢圓交于兩個不同的點,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知及.
(1)分別求、的定義域,并求的值;
(2)求的最小值并說明理由;
(3)若,,,是否存在滿足下列條件的正數(shù),使得對于任意的正數(shù),、、都可以成為某個三角形三邊的長?若存在,則求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果項有窮數(shù)列滿足,即,那么稱有窮數(shù)列為“對稱數(shù)列”.例如,由組合數(shù)組成的數(shù)列就是“對稱數(shù)列”.
(1)設(shè)數(shù)列是項數(shù)為7的“對稱數(shù)列”,其中成等比數(shù)列,且寫出數(shù)列的每一項;
(2)設(shè)數(shù)列是項數(shù)為的“對稱數(shù)列”,其中是公差為2的等差數(shù)列,且求取得最大值時的取值,并求最大值;
(3)設(shè)數(shù)列是項數(shù)為的對稱數(shù)列”,且滿足記為數(shù)列的前項和,若求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com