【題目】已知定圓,過定點的直線交圓兩點.

1)若,求直線的斜率;

2)求面積的取值范圍;

3)若圓內(nèi)一點的坐標(biāo)是,且過點的直線交圓兩點,,求實數(shù)的取值范圍.

【答案】1;(2;(3

【解析】

1)將轉(zhuǎn)化為,,利用點,在圓上,整理方程可得,進(jìn)而求得,再利用斜率公式求得斜率即可;

2)當(dāng),最短,此時最小,,由“小邊對小角”進(jìn)而得到三角形面積范圍;

3)當(dāng),可得,則在當(dāng),,進(jìn)而得到符合條件的的范圍

1)由題,因為,所以點在圓內(nèi),

因為,所以,

設(shè),,,

,,

因為,在圓上,所以,,,解得,

代回中可得,

所以

2)因為點在圓內(nèi),

所以當(dāng),最短,此時最小,

,,

所以,

所以,,

所以,

所以,

所以

3)當(dāng),,所以,

此時,

當(dāng),,則存在,所以,

綜上,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓的左焦點為,橢圓上任意點到的最遠(yuǎn)距離是,過直線軸的交點任作一條斜率不為零的直線與橢圓交于不同的兩點,點關(guān)于軸的對稱點為.

(1)求橢圓的方程;

(2)求證:、三點共線;

(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.

(1)求拋物線方程;

(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域為的函數(shù)圖像的兩個端點為、,向量,圖像上任意一點,其中,若不等式恒成立,則稱函數(shù)上滿足“范圍線性近似”,其中最小正實數(shù)稱為該函數(shù)的線性近似閾值.若函數(shù)定義在上,則該函數(shù)的線性近似閾值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三條直線),,若的距離是.

1)求a的值:

2)能否找到一點P,使得點P同時滿足下列三個條件:①P是第一象限的點;②點P的距離是點P的距離的;③點P的距離與點P的距離之比是,若能,求出點P的坐標(biāo),若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,以原點0為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)若曲線方程中的參數(shù)是,且有且只有一個公共點,求的普通方程;

(2)已知點,若曲線方程中的參數(shù)是,,且相交于,兩個不同點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公歷日為我國傳統(tǒng)清明節(jié),清明節(jié)掃墓我們都要獻(xiàn)鮮花,某種鮮花的價格會隨著需求量的增加而上升.一個批發(fā)市場向某地商店供應(yīng)這種鮮花,具體價格統(tǒng)計如下表所示

日供應(yīng)量(束)

單位(元)

(I)根據(jù)上表中的數(shù)據(jù)進(jìn)行判斷,函數(shù)模型哪一個更適合于體現(xiàn)日供應(yīng)量與單價之間的關(guān)系;(給出判斷即可,不必說明理由)

(II)根據(jù)(I)的判斷結(jié)果以及參考數(shù)據(jù),建立關(guān)于的回歸方程;

(III)該地區(qū)有個商店,其中個商店每日對這種鮮花的需求量在束以下,個商店每日對這種鮮花的需求量在束以上,則從這個商店個中任取個進(jìn)行調(diào)查,求恰有個商店對這種鮮花的需求量在束以上的概率.

參考公式及相關(guān)數(shù)據(jù):對于一組數(shù)據(jù),,...,,其回歸直線的斜率和截距的最小二乘估計分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,為矩形,是以為直角的等腰直角三角形,平面平面

(Ⅰ)證明:平面平面;

(Ⅱ)為直線的中點,且,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究學(xué)生的數(shù)學(xué)核心素養(yǎng)與抽象能力(指標(biāo))、推理能力(指標(biāo))、建模能力(指標(biāo))的相關(guān)性,將它們各自量化為1、2、3三個等級,再用綜合指標(biāo)的值評定學(xué)生的數(shù)學(xué)核心素養(yǎng),若則數(shù)學(xué)核心素養(yǎng)為一級;若,則數(shù)學(xué)核心素養(yǎng)為二級;若,則數(shù)學(xué)核心素養(yǎng)為三級,為了了解某校學(xué)生的數(shù)學(xué)核心素養(yǎng),調(diào)查人員隨機(jī)訪問了某校10名學(xué)生,得到如下數(shù)據(jù)

學(xué)生編號

(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同條件下綜合指標(biāo)值也相同的概率;

(2)在這10名學(xué)生中任取三人,其中數(shù)學(xué)核心素養(yǎng)等級是一級的學(xué)生人數(shù)記為求隨機(jī)變量的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案