【題目】定義域?yàn)?/span>的函數(shù)圖像的兩個(gè)端點(diǎn)為,向量,圖像上任意一點(diǎn),其中,若不等式恒成立,則稱函數(shù)上滿足“范圍線性近似”,其中最小正實(shí)數(shù)稱為該函數(shù)的線性近似閾值.若函數(shù)定義在上,則該函數(shù)的線性近似閾值是( )

A. B. C. D.

【答案】B

【解析】

由向量可得:兩點(diǎn)的橫坐標(biāo)相等,將不等式恒成立問(wèn)題轉(zhuǎn)化成: 時(shí),恒成立,轉(zhuǎn)化成:.,記:,即可求得,問(wèn)題得解。

作出函數(shù)圖像,它的圖象在上的兩端點(diǎn)分別為:,

所以直線的方程為:

設(shè)是曲線上的一點(diǎn),,其中

,可知三點(diǎn)共線,

所以點(diǎn)的坐標(biāo)滿足直線的方程,

,,

所以兩點(diǎn)的橫坐標(biāo)相等.

函數(shù)上滿足“范圍線性近似”

所以 時(shí),恒成立.

即:恒成立.

,整理得:,

,當(dāng)且僅當(dāng)時(shí),等號(hào)成立。

當(dāng)時(shí),

所以,所以.

即:

所以該函數(shù)的線性近似閾值是:

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過(guò)Mx軸的垂線,垂足為N,點(diǎn)P滿足.

1)求點(diǎn)P的軌跡方程;

2)設(shè)點(diǎn)在直線上,且.證明:過(guò)點(diǎn)P且垂直于OQ的直線過(guò)C的左焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,平面平面,四邊形為矩形,,.

(1)求證:平面;

(2)若直線與平面所成角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)ABCA1B1C1中,底面ABC是邊長(zhǎng)為2的等邊三角形,上、下底面的面積之比為14,側(cè)面A1ABB1⊥底面ABC,并且A1AA1B1,∠AA1B90°

1)平面A1C1B平面ABCl,證明:A1C1l;

2)求平面A1C1B與平面ABC所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),一個(gè)焦點(diǎn)為

1)求橢圓的方程;

2)若直線軸交于點(diǎn),與橢圓交于兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在五邊形中,,,,,是以為斜邊的等腰直角三角形.現(xiàn)將沿折起,使平面平面,如圖②,記線段的中點(diǎn)為.

(1)求證:平面平面;

(2)求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定圓,過(guò)定點(diǎn)的直線交圓兩點(diǎn).

1)若,求直線的斜率;

2)求面積的取值范圍;

3)若圓內(nèi)一點(diǎn)的坐標(biāo)是,且過(guò)點(diǎn)的直線交圓兩點(diǎn),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,滿足();數(shù)列為等差數(shù)列.且

1)求數(shù)列的通項(xiàng)公式;

2)若為數(shù)列的前n項(xiàng)和,求滿足不等式n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓上存在一點(diǎn),滿足.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓的半徑的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案