A. | [3k-$\frac{3}{2}$,3k],k∈Z | B. | [3k,3k+$\frac{3}{2}$],k∈Z | C. | [3kπ-$\frac{3}{2}$,3kπ],k∈Z | D. | [3kπ,3kπ+$\frac{3}{2}$],k∈Z |
分析 三角函數(shù)的圖象與直線y=b(0<b<A)的三個(gè)相鄰交點(diǎn)的橫坐標(biāo)分別是1,2,4,至少提供兩個(gè)方面的信息:
①第一個(gè)交點(diǎn)與第三個(gè)交點(diǎn)的差是一個(gè)周期;
②第一個(gè)交點(diǎn)與第二個(gè)交點(diǎn)的中點(diǎn)橫坐標(biāo)對(duì)應(yīng)的函數(shù)值是最大值或最小值;
從這兩個(gè)方面考慮求得參數(shù)ω,φ,從而利用三角函數(shù)的單調(diào)性求答案.
解答 解:與直線y=b(0<b<A)的三個(gè)相鄰交點(diǎn)的橫坐標(biāo)分別是1,2,4,
知函數(shù)的周期為T=$\frac{2π}{ω}$=4-1=3,
解得ω=$\frac{2π}{3}$;
再由三角函數(shù)的圖象與直線y=b(0<b<A)知:
1與2的中點(diǎn)必為函數(shù)的最大值的橫坐標(biāo),
由五點(diǎn)法知$\frac{2π}{3}$×$\frac{3}{2}$+φ=$\frac{π}{2}$,
解得φ=-$\frac{π}{2}$;
∴f(x)=Asin($\frac{2π}{3}$x-$\frac{π}{2}$)=-Acos($\frac{2π}{3}$x),
令2kπ≤$\frac{2π}{3}$x≤2kπ+π,k∈Z,
解得3k≤x≤3k+$\frac{3}{2}$,k∈Z,
∴f(x)的單調(diào)遞增區(qū)間是[3k,3k+$\frac{3}{2}$],(k∈Z).
故選:B.
點(diǎn)評(píng) 本題考查了三角函數(shù)的解析式以及三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河南省商丘市高一文下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題
擲一枚均勻的硬幣兩次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.下列結(jié)果正確的是( )
A.P(M)=,P(N)=
B.P(M)=,P(N)=
C.P(M)=,P(N)=
D.P(M)=,P(N)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | (-∞,1) | C. | (-1,1) | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{5}}{4}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com