【題目】下列判斷正確的是(

A.兩圓錐曲線的離心率分別為,則兩圓錐曲線均為橢圓的充要條件.

B.已知為圓內(nèi)異于圓心的一點,則直線與該圓相交.

C.是實數(shù),若方程表示雙曲線,則.

D.命題的否定是.

【答案】D

【解析】

假設,,此時,即可判斷選項A;由點與圓的位置關(guān)系可得,再利用圓心到直線的距離與半徑的關(guān)系的比較判斷選項B;由雙曲線的方程的判斷選項C;由全稱命題的否定的概念判斷選項D.

對于選項A,,,此時,但兩圓錐曲線一個是橢圓,一個是雙曲線,A錯誤;

對于選項B,為圓內(nèi)異于圓心的一點可得,

又因為圓心到直線的距離為,所以圓與直線相離,B錯誤;

對于選項C,若方程表示雙曲線,,,C錯誤;

對于選項D,由全稱命題的否定即可判斷,D正確;

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1)若,求上的最小值;

2)求的極值點;

3)若內(nèi)有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率利潤保費收入)的頻率分布直方圖如圖所示:

(1)試估計這款保險產(chǎn)品的收益率的平均值;

(2)設每份保單的保費在20元的基礎上每增加元,對應的銷量為(萬份).從歷史銷售記錄中抽樣得到如下5組的對應數(shù)據(jù):

25

30

38

45

52

銷量為(萬份)

7.5

7.1

6.0

5.6

4.8

由上表,知有較強的線性相關(guān)關(guān)系,且據(jù)此計算出的回歸方程為

(。┣髤(shù)的值;

(ⅱ)若把回歸方程當作的線性關(guān)系,用(1)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問每份保單的保費定為多少元時此產(chǎn)品可獲得最大利潤,并求出最大利潤.注:保險產(chǎn)品的保費收入每份保單的保費銷量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,合肥一中積極開展美麗校園建設,現(xiàn)擬在邊長為0.6千米的正方形地塊上劃出一片三角形地塊建設小型生態(tài)園,點分別在邊上.

(1)當點分別時邊中點和靠近的三等分點時,求的余弦值;

(2)實地勘察后發(fā)現(xiàn),由于地形等原因,的周長必須為1.2千米,請研究是否為定值,若是,求此定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】司機在開機動車時使用手機是違法行為,會存在嚴重的安全隱患,危及自己和他人的生命. 為了研究司機開車時使用手機的情況,交警部門調(diào)查了名機動車司機,得到以下統(tǒng)計:在名男性司機中,開車時使用手機的有人,開車時不使用手機的有人;在名女性司機中,開車時使用手機的有人,開車時不使用手機的有人.

(1)完成下面的列聯(lián)表,并判斷是否有的把握認為開車時使用手機與司機的性別有關(guān);

開車時使用手機

開車時不使用手機

合計

男性司機人數(shù)

女性司機人數(shù)

合計

(2)以上述的樣本數(shù)據(jù)來估計總體,現(xiàn)交警部門從道路上行駛的大量機動車中隨機抽檢3輛,記這3輛車中司機為男性且開車時使用手機的車輛數(shù)為,若每次抽檢的結(jié)果都相互獨立,求的分布列和數(shù)學期望

參考公式與數(shù)據(jù):

參考數(shù)據(jù):

參考公式

span>,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面四邊形ABCD中,E、FAD、BD中點,ABADCD=2, BD=2 ,∠BDC=90°,將△ABD沿對角線BD折起至△,使平面⊥平面BCD,則四面體中,下列結(jié)論不正確是 ( )

A. EF∥平面

B. 異面直線CD所成的角為90°

C. 異面直線EF所成的角為60°

D. 直線與平面BCD所成的角為30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)圖像上一點處的切線方程為

1)求的值;

2)若方程在區(qū)間內(nèi)有兩個不等實根,求的取值范圍;

3)令如果的圖像與軸交于兩點,的中點為,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,雙曲線上有兩點滿足,且點到直線的距離為,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個二次函數(shù)y=f(x)的圖象

(1)寫出這個二次函數(shù)的零點

(2)求這個二次函數(shù)的解析式

(3)當實數(shù)k在何范圍內(nèi)變化時,函數(shù)g(x)=f(x)-kx在區(qū)間[-2,2]上是單調(diào)函數(shù)?

查看答案和解析>>

同步練習冊答案