【題目】已知函數(shù)圖像上一點(diǎn)處的切線方程為

1)求的值;

2)若方程在區(qū)間內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍;

3)令如果的圖像與軸交于兩點(diǎn),的中點(diǎn)為,求證:

【答案】1;(2;(3)證明見解析

【解析】

1)根據(jù)導(dǎo)數(shù)的幾何意義可知,利用切線方程求得,代入曲線可得關(guān)于的方程,與聯(lián)立可構(gòu)造方程組求得結(jié)果;(2)將問題轉(zhuǎn)化為的圖象在上有兩個(gè)交點(diǎn);利用導(dǎo)數(shù)得到上的單調(diào)性和最值,從而確定有兩個(gè)交點(diǎn)時(shí)的取值范圍,進(jìn)而得到結(jié)果;(3)采用反證法,假設(shè),利用上,中點(diǎn)坐標(biāo)公式和可化簡(jiǎn)整理得到,令,構(gòu)造函數(shù),利用導(dǎo)數(shù)可知上單調(diào)遞增,從而得到,與等式矛盾,可知假設(shè)不成立,從而證得結(jié)論.

由題意得:定義域?yàn)?/span>;

1處的切線方程為:

,解得:

2)方程在區(qū)間內(nèi)有兩個(gè)不等實(shí)根等價(jià)于的圖象在上有兩個(gè)交點(diǎn)

由(1)知:,

當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞增,在上單調(diào)遞減

,解得:

3,則

假設(shè),則有:

…①;…②;

…③;…④

②得:

由④得: ,即:

,即

,由得:

設(shè)

上單調(diào)遞增

不成立,即假設(shè)不成立

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高一(1)班參加校生物競(jìng)賽學(xué)生的成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

(1)求高一(1)班參加校生物競(jìng)賽的人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;

(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選2人進(jìn)行某項(xiàng)研究,求至少有1人分?jǐn)?shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角ABC中,AC,BC1,點(diǎn)D是斜邊AB上的動(dòng)點(diǎn),將BCD沿著CD翻折至B'CD,使得點(diǎn)B'在平面ACD內(nèi)的射影H恰好落在線段CD上,則翻折后|AB'|的最小值是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(

A.兩圓錐曲線的離心率分別為,則兩圓錐曲線均為橢圓的充要條件.

B.已知為圓內(nèi)異于圓心的一點(diǎn),則直線與該圓相交.

C.設(shè)是實(shí)數(shù),若方程表示雙曲線,則.

D.命題的否定是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019中秋節(jié)期間,高速公路車輛較多,交警部門通過路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車行駛速度,采用的方法是:按到達(dá)監(jiān)控點(diǎn)先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度()分成七段后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問題:

1)求的值,并說明交警部門采用的是什么抽樣方法?

2)求這120輛車行駛速度的眾數(shù)和中位數(shù)的估計(jì)值(精確到0.1);

3)若該路段的車速達(dá)到或超過即視為超速行駛,試根據(jù)樣本估計(jì)該路段車輛超速行駛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖像上一點(diǎn)處的切線方程為

1)求的值;

2)若方程在區(qū)間內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍;

3)令如果的圖像與軸交于兩點(diǎn),的中點(diǎn)為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年年底,某城市地鐵交通建設(shè)項(xiàng)目已經(jīng)基本完成,為了解市民對(duì)該項(xiàng)目的滿意度,分別從不同地鐵站點(diǎn)隨機(jī)抽取若干市民對(duì)該項(xiàng)目進(jìn)行評(píng)分(滿分),繪制如下頻率分布直方圖,并將分?jǐn)?shù)從低到高分為四個(gè)等級(jí):

滿意度評(píng)分

低于60

60分到79

80分到89

不低于90

滿意度等級(jí)

不滿意

基本滿意

滿意

非常滿意

已知滿意度等級(jí)為基本滿意的有人.

(1)求頻率分布于直方圖中的值,及評(píng)分等級(jí)不滿意的人數(shù);

(2)相關(guān)部門對(duì)項(xiàng)目進(jìn)行驗(yàn)收,驗(yàn)收的硬性指標(biāo)是:市民對(duì)該項(xiàng)目的滿意指數(shù)不低于,否則該項(xiàng)目需進(jìn)行整改,根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該項(xiàng)目能否通過驗(yàn)收,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,最小值為4的是(

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案