【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲、乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.

甲每天生產(chǎn)的次品數(shù)/件

0

1

2

3

4

對應(yīng)的天數(shù)/天

40

20

20

10

10

乙每天生產(chǎn)的次品數(shù)/件

0

1

2

3

對應(yīng)的天數(shù)/天

30

25

25

20

(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出的函數(shù)關(guān)系式;

(2)按這100天統(tǒng)計(jì)的數(shù)據(jù),分別求甲、乙兩名工人的平均日利潤.

【答案】(1)見解析;(2)見解析

【解析】

(1)根據(jù)題設(shè)條件可得的函數(shù)關(guān)系式為,其中,.

(2)利用(1)求出各自的總利潤后可得各自的平均日利潤.

(1)因?yàn)榧酌刻焐a(chǎn)的次品數(shù)為,所以損失元,

則其生產(chǎn)的正品數(shù)為,獲得的利潤為元,

因而的函數(shù)關(guān)系式為 ,其中,.

(2)這100天中甲工人的總利潤為 元,

因而平均日利潤為元.

這100天中乙工人的總利潤為元.

因而平均日利潤為元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①線性相關(guān)系數(shù)越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱;

②用來刻畫回歸效果,越大,說明模型的擬合效果越好;

③根據(jù)列聯(lián)表中的數(shù)據(jù)計(jì)算得出的的值越大,兩類變量相關(guān)的可能性就越大;

④在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好;

⑤從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣.

其中真命題的序號是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的正方形和高為的等腰梯形所在的平面互相垂直,交于點(diǎn),點(diǎn)為線段上任意一點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)求與平面所成角的正弦值;

(Ⅲ)是否存在點(diǎn)使平面與平面垂直,若存在求出的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成,每件產(chǎn)品的非原料成本y(元)與生產(chǎn)該產(chǎn)品的數(shù)量x(千件)有關(guān),經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):

x

1

2

3

4

5

6

7

8

y

112

61

44.5

35

30.5

28

25

24

根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.

參考數(shù)據(jù):(其中

183.4

0.34

0.115

1.53

360

22385.8

參考公式:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:

1)觀察散點(diǎn)圖判斷,哪一個(gè)適宜作為非原料成本y與生產(chǎn)該產(chǎn)品的數(shù)量x的回歸方程類型?(給出判斷即可,不必說明理由)

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立yx的回歸方程.

3)試預(yù)測生產(chǎn)該產(chǎn)品10000件時(shí)每件產(chǎn)品的非原料成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某電視臺主辦的歌手大獎(jiǎng)賽上七位評委為甲、乙兩名選手打出的分?jǐn)?shù)的莖葉圖(其中為數(shù)字0~9中的一個(gè)),則下列結(jié)論中正確的是( )

A. 甲選手的平均分有可能和乙選手的平均分相等

B. 甲選手的平均分有可能比乙選手的平均分高

C. 甲選手所有得分的中位數(shù)比乙選手所有得分的中位數(shù)低

D. 甲選手所有得分的眾數(shù)比乙選手所有得分的眾數(shù)高

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某年級組織學(xué)生參加了某項(xiàng)學(xué)術(shù)能力測試,為了解參加測試學(xué)生的成績情況,從中隨機(jī)抽取20名學(xué)生的測試成績作為樣本,規(guī)定成績大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀.統(tǒng)計(jì)結(jié)果如圖:

(1)求的值和樣本的平均數(shù);

(2)從該樣本成績優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績至少有一個(gè)落在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形,如圖.

現(xiàn)在上述圖(3)中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率為_________.

查看答案和解析>>

同步練習(xí)冊答案