【題目】設集合A={x|x2﹣3x+2=0},B={x|x2+2a﹣1x+a2﹣5=0}

1)若A∩B={2},求實數(shù)a的值;

2)若A∪B=A,求實數(shù)a的取值范圍.

【答案】1a的值為-1或-3;

2a的取值范圍是a≤3.

【解析】

(1)根據(jù)條件AB={2},得到,代入方程,求得的值,分類討論即可求解;

(2)由ABA轉(zhuǎn)化為,然后分類討論,建立關系式,即可求解實數(shù)的取值范圍.

解:由x2-3x+2=0x=1x=2,

故集合A={1,2}.

(1)AB={2},2B,代入B中的方程,

a2+4a+3=0a=-1a=-3.

a=-1時,B={x|x2-4=0}={-2,2},滿足條件;

a=-3時,B={x|x2-4x+4=0}={2},滿足條件.

綜上,a的值為-1或-3.

(2)對于集合B,

Δ=4(a+1)2-4(a2-5)=8(a+3).

ABA,BA.

①當Δ<0,即a<-3時,B,滿足條件;

②當Δ=0,即a=-3時,B={2},滿足條件;

③當Δ>0,即a>-3時,BA={1,2}才能滿足條件,

則由根與系數(shù)的關系得矛盾.

綜上,a的取值范圍是{a|a≤-3}.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},則A∩B=(
A.{1,3}
B.{5,6}
C.{4,5,6}
D.{4,5,6,7}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率 ,過點A(0,﹣b)和B(a,0)的直線與原點的距離為
(1)求橢圓的方程;
(2)已知定點E(﹣1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點,問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下關于圓錐曲線的命題中

①設是兩個定點, 為非零常數(shù),若,則動點的軌跡為雙曲線的一支;②過定圓上一定點作圓的動弦 為坐標原點,若,則動點的軌跡為橢圓;③方程的兩根可分別作為橢圓和雙曲線的離心率;④雙曲線與橢圓有相同的焦點.

其中真命題的序號是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是圓上任意一點,點與點關于原點對稱,線段的垂直平分線與交于.

(1)求點的軌跡的方程;

(2)過點的動直線與點的軌跡交于兩點,在軸上是否存在定點使以為直徑的圓恒過這個點?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司共有60位員工,為提高員工的業(yè)務技術水平,公司擬聘請專業(yè)培訓機構進行培訓.培訓的總費用由兩部分組成:一部分是給每位參加員工支付400元的培訓材料費;另一部分是給培訓機構繳納的培訓費.若參加培訓的員工人數(shù)不超過30人,則每人收取培訓費1000元;若參加培訓的員工人數(shù)超過30人,則每超過1人,人均培訓費減少20元.設公司參加培訓的員工人數(shù)為x人,此次培訓的總費用為y元.

(1)求出yx之間的函數(shù)關系式;

(2)請你預算:公司此次培訓的總費用最多需要多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ADAB,ABDCADDCAP2,AB1,點E為棱PC的中點.

(1)證明:BEDC;

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點,滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一種大型商品,A,B兩地都有出售,且價格相同,某地居民從兩地之一購得商品后,運回的費用是:每單位距離A地的運費是B地運費的3倍.已知A,B兩地相距10 km,顧客選A或B地購買這件商品的標準是:包括運費和價格的總費用較低.求A,B兩地的售貨區(qū)域的分界線的曲線形狀,并指出曲線上、曲線內(nèi)、曲線外的居民應如何選擇購貨地點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知點是拋物線上一定點,直線的斜率互為相反數(shù),且與拋物線另交于兩個不同的點.

1)求點到其準線的距離;(2)求證:直線的斜率為定值.

查看答案和解析>>

同步練習冊答案