(本小題滿分12分)如圖,三棱柱中,側(cè)棱平面,為等腰直角三角形,,且分別是的中點(diǎn).

(1)求證:平面
(2)求證:平面;
(3)設(shè),求三棱錐的體積.
(1)詳見解析,(2)詳見解析,(3)

試題分析:(1)證明線面平行,關(guān)鍵在于找出線線平行.顯然DE與三角形ABC三條邊都不平行,因此需作輔助線.因?yàn)镈,E都是中點(diǎn),所以取中點(diǎn),連接,可證得四邊形是平行四邊形.因而有,再根據(jù)線面平行判定定理就可證得.(2)要證明平面,需證明,前面在平面中證明,利用勾股定理,即通過計算設(shè),則.∴,∴.后者通過線面垂直與線線垂直的轉(zhuǎn)化得,即由面,得,再得.(3)求三棱錐的體積關(guān)鍵在于求高.由(2)得平面,所以三棱錐的高為的一半,因此三棱錐的體積為.
試題解析:(1)取中點(diǎn),連接
,∴.
∴四邊形是平行四邊形.
,又∵,
平面.                 4分
(2)∵是等腰直角三角形斜邊的中點(diǎn),∴.
又∵三棱柱是直三棱柱,∴面.
,∴.
設(shè),則.
. ∴.
,∴平面.                 8分

(3)∵點(diǎn)是線段的中點(diǎn),∴點(diǎn)到平面的距離是點(diǎn)到平面距離的.
,∴三棱錐的高為;在中,,所以三棱錐的底面面積為,故三棱錐的體積為.             12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形中,°,平面,,,設(shè)的中點(diǎn)為,

(1) 求證:平面;
(2) 求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,垂直于矩形所在平面,,

(1)求證:;
(2)若矩形的一個邊,,則另一邊的長為何值時,三棱錐的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正三棱柱的底面邊長為,高為2,則直三棱柱的外接球的表面積為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在三棱錐中,,,,二面角的余弦值是,若都在同一球面上,則該球的表面積是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直角梯形,,沿折疊成三棱錐,當(dāng)三棱錐體積最大時,求此時三棱錐外接球的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

棱長為1的正方體的8個頂點(diǎn)都在球的表面上,分別是棱的中點(diǎn),點(diǎn),分別是線段,(不包括端點(diǎn))上的動點(diǎn),且線段平行于平面,則
(1)直線被球截得的線段長為
(2)四面體的體積的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,已知三棱柱ABC-A1B1C1的所有棱長均為1,且AA1⊥底面ABC,則三棱錐B1-ABC1的體積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知三角形所在平面與矩形所在平面互相垂直,,若點(diǎn)都在同一球面上,則此球的表面積等于        .

查看答案和解析>>

同步練習(xí)冊答案