在三棱錐中,,,二面角的余弦值是,若都在同一球面上,則該球的表面積是.
.

試題分析:取中點,連接,∵,∴,∵
,平面.∴為二面角.在中,,,
.取等邊的中心,作平面,過平面,為外接球球心,
,二面角的余弦值是,所以,
,∴點為四面體的外接球球心,其半徑為,表面積為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖在三棱柱ABC-A1B1C1中,AB⊥AC,頂點A1在底面ABC上的射影恰為點B,且AB=AC=A1B=2.
 
(1)證明:平面A1AC⊥平面AB1B;
(2)若點P為B1C1的中點,求三棱錐P-ABC與四棱錐P-AA1B1B的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,三棱柱中,側(cè)棱平面為等腰直角三角形,,且分別是的中點.

(1)求證:平面;
(2)求證:平面;
(3)設,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖甲,是邊長為6的等邊三角形,分別為靠近的三等分點,點為邊邊的中點,線段交線段于點.將沿翻折,使平面平面,連接,形成如圖乙所示的幾何體.

(1)求證:平面
(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個正三棱柱的側(cè)棱長和底面邊長相等,體積為2,它的三視圖中的俯視圖如圖所示,側(cè)視圖是一個矩形,則這個矩形的面積是(  )
A.4 B.2 C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知某一多面體內(nèi)接于一個簡單組合體,如果該組合體的正視圖.測試圖.俯視圖均如圖所示,且圖中的四邊形是邊長為2的正方形,則該球的表面積是_______________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知三棱柱ABC-A1B1C1底面是邊長為的正三角形,側(cè)棱垂直于底面,且該三棱柱的外接球表面積為12,則該三棱柱的體積為.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

四面體中,互相垂直,,且,則四面體的體積的最大值是(   ) .
A.4B.2C.5D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知一個正方體的所有頂點在一個球面上,若球的體積為,則正方體的棱長為    .

查看答案和解析>>

同步練習冊答案