2.若變量x,y滿足不等式組$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,則目標函數(shù)z=2x+y 的最大值為( 。
A.3B.4C.5D.6

分析 確定不等式表示的平面區(qū)域,明確目標函數(shù)的幾何意義,即可求得最大值

解答 解:已知不等式組表示的區(qū)域如圖,由目標函數(shù)的幾何意義得到,當直線z=2x+y經(jīng)過圖中B時,在y軸的截距最大,即z最大,又B(2,1),
所以z是最大值為2×2+1=5;
故選:C.

點評 本題考查線性規(guī)劃知識,考查數(shù)形結合的數(shù)學思想,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.空間直角坐標系中點P(1,3,5)關于原點對稱的點P′的坐標是( 。
A.(-1,-3,-5)B.(-1,-3,5)C.(1,-3,5)D.(-1,3,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.${∫}_{-2}^{2}$(sinx+ex)dx=e2-e-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知F1、F2是橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點,F(xiàn)1(-1,0),且橢圓M過點(1,$\frac{2\sqrt{3}}{3}$).
(Ⅰ)求橢圓M的標準方程;
(Ⅱ)過F1、F2分別作直線l1與l2,l1交橢圓于B,D兩點,l2交橢圓于A,C兩點,且l1⊥l2,若四邊形ABCD的面積為$\frac{96}{25}$,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的導函數(shù),即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,則f2015(x)=-sinx-cosx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設全集U=R,集合M={x|x2+x-2>0},N={x|{2x-1≤$\frac{1}{2}$},則(∁UM)∩N=( 。
A.[-2,0]B.[-2,1]C.[0,1]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.(x3-$\frac{1}{x}$)4的展開式中x8的系數(shù)為-4.(用數(shù)字填寫答案)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知P是雙曲線$\frac{x^2}{9}$-$\frac{y^2}{16}$=1右支上任意一點,M是圓(x+5)2+y2=1上任意一點,設P到雙曲線的漸近線的距離為d,則d+|PM|的最小值為( 。
A.8B.9C.$\frac{47}{5}$D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.對于非零復數(shù)a,b,c,有以下七個命題:
①a+$\frac{1}{a}$≠0;
②若a=-$\overline{a}$,$\overline{a}$為a的共軛復數(shù),則a為純虛數(shù);
③(a+b)2=a2+2ab+b2
④若a2=ab,則a=b;
⑤若|a|=|b|,則a=±b;
⑥若a2+b2+c2>0,則a2+b2>-c2;
⑦若a2+b2>-c2,則a2+b2+c2>0.
其中,真命題的個數(shù)為(  )
A.2個B.3個C.4個D.5個

查看答案和解析>>

同步練習冊答案