A. | a>b>c | B. | b>c>a | C. | c>b>a | D. | c>a>b |
分析 根據(jù)題意,由函數(shù)為奇函數(shù)分析可得a=f(log25),進而分析可得1<20.8<2<log24.1<log25,結(jié)合函數(shù)為增函數(shù),即可得答案.
解答 解:根據(jù)題意,f(x)為奇函數(shù),則a=-f(log2$\frac{1}{5}$)=f(log25),
b=f(log24.1),
c=f(20.8),
又1<20.8<2<log24.1<log25,
∴f(20.8)<f(log24.1)<f(log25),
即有a>b>c;
故選:A.
點評 本題考查函數(shù)的奇偶性與單調(diào)性的綜合應用,涉及對數(shù)的運算,關(guān)鍵是比較自變量的大。
科目:高中數(shù)學 來源: 題型:選擇題
A. | 193 | B. | 194 | C. | 195 | D. | 196 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15 | B. | 16 | C. | 17 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
租用單車數(shù)量x(千輛) | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
租用單車數(shù)量x(千輛) | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值$\stackrel{∧}{{y}_{i}}$(1) | 2.4 | 2.1 | 1.6 | ||
殘差$\stackrel{∧}{{e}_{i}}$(1) | 0 | -0.1 | 0.1 | |||
模型乙 | 估計值$\stackrel{∧}{{y}_{i}}$ (2) | 2.3 | 2 | 1.9 | ||
殘差$\stackrel{∧}{{e}_{i}}$(2) | 0.1 | 0 | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | c<b<a | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 關(guān)于x軸對稱 | B. | 關(guān)于y軸對稱 | C. | 關(guān)于原點對稱 | D. | 關(guān)于直線y=x對稱 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com