4.已知直線l1∥l2,A是l1,l2之間的一定點(diǎn),并且A點(diǎn)到l1,l2的距離分別為1,2,B是直線l2上一動(dòng)點(diǎn),∠BAC=90°,AC與直線l1交于點(diǎn)C,則△ABC面積的最小值為2.

分析 過A作l1、l2的垂線,分別交l1、l2于E、F,則AE=1,AF=2,設(shè)∠FAC=θ,則AC=$\frac{1}{cosθ}$,AB=$\frac{2}{sinθ}$,推導(dǎo)出△ABC面積為S=$\frac{2}{sin2θ}$,由此能求出△ABC面積的最小值.

解答 解:過A作l1、l2的垂線,分別交l1、l2于E、F,
則AE=1,AF=2,
設(shè)∠FAC=θ,則Rt△ACF中,AC=$\frac{1}{cosθ}$,
Rt△ABE中,∠ABE=θ,
可得AB=$\frac{2}{sinθ}$,
∴△ABC面積為S=$\frac{1}{2}$×AB×AC=$\frac{1}{2}×\frac{1}{cos}×\frac{2}{sinθ}$=$\frac{2}{sin2θ}$,
∵θ∈(0,$\frac{π}{2}$)
∴當(dāng)且僅當(dāng)θ=$\frac{π}{2}$時(shí),sin2θ=1達(dá)到最大值1,
此時(shí)△ABC面積有最小值2.
故答案為:2.

點(diǎn)評(píng) 本題考查三角形面積的最小值的求法,考查三角函數(shù)、二面角公式、三角形面積等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2sin(2x+$\frac{π}{4}$),x∈R.
(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)說明函數(shù)f(x)=2sin(2x+$\frac{π}{4}$),x∈R的圖象可由正弦曲線y=sinx經(jīng)過怎樣的變化得到;
(Ⅲ)若f($\frac{α}{2}$-$\frac{π}{8}$)=$\frac{\sqrt{3}}{2}$.α是第二象限的角,求sin2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某地政府調(diào)查了工薪階層1000人的月工資收入,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖,其中工資收入分組區(qū)間是[10,15),[15,20),[20,25),[25,30)[30,35),[35,40](單位:百元)
(Ⅰ)為了了解工薪階層對(duì)工資收入的滿意程度,要用分層抽樣的方法從調(diào)查的1000人中抽取100人做電話詢問,求月工資收入在[30,35)內(nèi)應(yīng)抽取的人數(shù);
(Ⅱ)根據(jù)頻率分布直方圖估計(jì)這1000人的平均月工資為多少元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sinx,函數(shù)$g(x)=sin(ωx-\frac{π}{6})$(ω>0)滿足$g(0)=-g(\frac{π}{2})$,且y=g(x)在$(0,\frac{π}{2})$上有且僅有三個(gè)零點(diǎn).
(1)求ω的值;
(2)若ω>5,且m∈[0,4],求函數(shù)$y=g(\frac{x}{3}-\frac{π}{18})-mf(x)$在$x∈[0,\frac{π}{6}]$內(nèi)的最小值;
(3)設(shè)F(x)=ln(f(x)+1),求證:對(duì)于任意的x1,x2,當(dāng)$0<{x_2}<{x_1}<\frac{π}{2}$時(shí),有:$\frac{{f({x_1})-f({x_2})}}{{F({x_1})-F({x_2})}}>\sqrt{(f({x_1})+1)•(f({x_2})+1)}$.(注:函數(shù)$h(x)=x-\frac{1}{x}-2lnx$在區(qū)間[1,+∞)上單調(diào)遞增.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),在一個(gè)周期內(nèi)的圖象如圖所示,若已知函數(shù)數(shù)f(x1)=f(x2),且x1,x2∈[$\frac{π}{12}$,$\frac{5π}{6}$],x1≠x2,則f(x1+x2)=( 。
A.$\sqrt{3}$B.2C.-$\sqrt{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,當(dāng)x∈(-$\frac{3}{2}$,0)時(shí),f(x)=log${\;}_{\frac{1}{2}}$(1-x),則f(2011)+f(2013)=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若{$\frac{{a}_{n}}{n}$+1}是公比為2的等比數(shù)列,且a1=1,則a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{9}}{9}$=1013.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知奇函數(shù)f(x)在R上是增函數(shù).若a=-f(log2$\frac{1}{5}$),b=f(log24.1),c=f(20.8),則a,b,c的大小關(guān)系為(  )
A.a>b>cB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z滿足(1-i)z=2+2i(i為虛數(shù)單位),則|z|=( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案