16.已知向量$\overrightarrow{a}$=(2,m+1),$\overrightarrow$=(m+3,4),且($\overrightarrow{a}$+$\overrightarrow$)∥($\overrightarrow{a}$-$\overrightarrow$),則m=-5或1.

分析 根據(jù)平面向量的坐標(biāo)運(yùn)算與共線定理的坐標(biāo)表示,列出方程即可求出m的值.

解答 解:向量$\overrightarrow{a}$=(2,m+1),$\overrightarrow$=(m+3,4),
∴($\overrightarrow{a}$+$\overrightarrow$)=(m+5,m+5),
($\overrightarrow{a}$-$\overrightarrow$)=(-m-1,m-3),
又($\overrightarrow{a}$+$\overrightarrow$)∥($\overrightarrow{a}$-$\overrightarrow$),
(m+5)(m-3)-(m+5)(-m-1)=0,
解得m=-5或m=1.
故答案為:-5或1.

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)表示與共線定理的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓W:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),橢圓短軸長(zhǎng)為2,且橢圓過點(diǎn)P(1,$\frac{{\sqrt{3}}}{2}}$),
1)求橢圓的方程;
2)直線l與橢圓W相交于A,B點(diǎn),請(qǐng)問在橢圓W上是否存在點(diǎn)C,四邊形AOBC為矩形,若存在,請(qǐng)求出矩形AOBC的面積,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$\int_0^{\frac{π}{2}}$sin(x-φ)dx=$\frac{{\sqrt{7}}}{4}}$,則sin2φ=$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=|x+a|+|x-2|.
(Ⅰ)當(dāng)a=3時(shí),求不等式f(x)≥7的解集;
(Ⅱ)若f(x)≤|x-4|的解集包含[0,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知復(fù)數(shù)z滿足方程z(4-3i)=3+4i,則z的虛部為( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.等比數(shù)列 {an}的前n項(xiàng)和為Sn,且a3=2S2+1,a4=2S3+1,則公比q為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.過兩點(diǎn)A(1,0),B(2,1),且圓心在直線x-y=0上的圓的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}是各項(xiàng)均不為零的等差數(shù)列,Sn為其前n項(xiàng)和,且an=$\sqrt{{S}_{2n-1}}$(n∈N*).若不等式λSn≥an-2016對(duì)任意n∈N*恒成立,則實(shí)數(shù)λ的最小值為$\frac{1}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.橢圓$\frac{x^2}{4}+{y^2}=1$的右焦點(diǎn)為F,直線x=t與橢圓相交于點(diǎn)A,B,若△FAB的周長(zhǎng)等于8則△FAB的面積為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案