【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),圓與圓外切于原點(diǎn),且兩圓圓心的距離,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓和圓的極坐標(biāo)方程;

(2)過點(diǎn)的直線,與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn),,與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn),,且,求四邊形面積的最大值.

【答案】1的極坐標(biāo)方程為的極坐標(biāo)方程為;(2.

【解析】

試題(1)先將圓的參數(shù)方程化為直角坐標(biāo)方程,再求出圓的直角坐標(biāo)方程,最后利用將直角坐標(biāo)方程化為極坐標(biāo)方程即可;(2)由,可得,,,得,利用三角函數(shù)有界性求最值即可.

試題解析:(1)由圓的參數(shù)方程為參數(shù)),

,

所以,

又因?yàn)閳A與圓外切于原點(diǎn),且兩圓圓心的距離

可得,則圓的方程為,

所以由,得圓的極坐標(biāo)方程為,

的極坐標(biāo)方程為.

2)由已知設(shè),

則由,可得,,

由(1)得:,

所以,

所以當(dāng)時,即時,有最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.

1)求的表達(dá)式,并求函數(shù)的值域

2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個不等實(shí)根,求常數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義城為R的函數(shù),若滿足:①;②當(dāng),且時,都有;③當(dāng)時,都有,則稱偏對稱函數(shù)”.下列函數(shù)是偏對稱函數(shù)的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空間中有不共面的個點(diǎn).求證:存在無窮個平面,恰好通過其中的兩個點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù)(a為常數(shù)).

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)判斷的單調(diào)性,并證明之;

2)若存在實(shí)數(shù),,使得函數(shù)在區(qū)間上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】半期考試后,班長小王統(tǒng)計(jì)了50名同學(xué)的數(shù)學(xué)成績,繪制頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖,估計(jì)這50名同學(xué)的數(shù)學(xué)平均成績;

用分層抽樣的方法從成績低于115的同學(xué)中抽取6名,再在抽取的這6名同學(xué)中任選2名,求這兩名同學(xué)數(shù)學(xué)成績均在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:的右焦點(diǎn)為F,點(diǎn)A(一2,2)為橢圓C內(nèi)一點(diǎn)。若橢圓C上存在一點(diǎn)P,使得|PA|+|PF|=8,則m的取值范圍是( ).

A. B. [9,25] C. D. [3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解甲、乙兩個工廠生產(chǎn)的輪胎的寬度是否達(dá)標(biāo),分別從兩廠隨機(jī)各選取了個輪胎,將每個輪胎的寬度(單位: )記錄下來并繪制出如下的折線圖:

(1)分別計(jì)算甲、乙兩廠提供的個輪胎寬度的平均值;

(2)輪胎的寬度在內(nèi),則稱這個輪胎是標(biāo)準(zhǔn)輪胎.

(i)若從甲乙提供的個輪胎中隨機(jī)選取個,求所選的輪胎是標(biāo)準(zhǔn)輪胎的概率

(ii)試比較甲、乙兩廠分別提供的個輪胎中所有標(biāo)準(zhǔn)輪胎寬度的方差大小,根據(jù)兩廠的標(biāo)準(zhǔn)輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?

查看答案和解析>>

同步練習(xí)冊答案