已知函數(shù)為奇函數(shù),且在處取得極大值2.
(Ⅰ)求的解析式;
(Ⅱ)過點(可作函數(shù)圖像的三條切線,求實數(shù)的取值范圍;
(Ⅲ)若對于任意的恒成立,求實數(shù)的取值范圍.

(1) (2) (3)

解析試題分析:(I)為奇函數(shù)


處取得極大值2

從而解析式為               4分
(2)設(shè)切點為,則
消去
設(shè),則
遞減,遞增
=
要使過點可作函數(shù)圖像的三條切線,則實數(shù)的取值范圍為
9分
(3)
從而
當(dāng)時,
當(dāng)時,
設(shè)

遞增,

從而
實數(shù)的取值范圍為  14分
考點:導(dǎo)數(shù)的幾何意義,導(dǎo)數(shù)的運(yùn)用
點評:解決該試題的關(guān)鍵是對于導(dǎo)數(shù)幾何意義以及導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù))是實數(shù)集上的奇函數(shù).
(1)求的值;
(2)試討論函數(shù)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

判斷函數(shù)f(x)=在區(qū)間(1,+∞)上的單調(diào)性,并用單調(diào)性定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若關(guān)于的不等式的解集是,的定義域是,
,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)寫出該函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)恰有3個不同零點,求實數(shù)的取值范圍;
(3)若對所有恒成立,求實數(shù)n的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


已知函數(shù),且任意的

(1)求、、的值;
(2)試猜想的解析式,并用數(shù)學(xué)歸納法給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(1)時,求的最小值;
(2)若上是單調(diào)函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,
(1)求的值;
(2)當(dāng)時,求的解析式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,且恒成立.
(1)求a、b的值;
(2)若對,不等式恒成立,求實數(shù)m的取值范圍.
(3)記,那么當(dāng)時,是否存在區(qū)間),使得函數(shù)在區(qū)間上的值域恰好為?若存在,請求出區(qū)間;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案