A. | 264 | B. | 256 | C. | 248 | D. | 246 |
分析 根據(jù)二項式(x2-3x+2)4=x8+a1x7+…+a6x2+a7x+a8,分別求出a6和a8的值即可.
解答 解:∵(x2-3x+2)4=(x-2)4(x-1)4=x8+a1x7+…+a6x2+a7x+a8,
∴a8=24=16,
a6=${C}_{4}^{2}$•(-2)2•${C}_{4}^{4}$•(-1)4+${C}_{4}^{3}$•(-2)3•${C}_{4}^{3}$•(-1)3+${C}_{4}^{4}$•(-2)4•${C}_{4}^{2}$•(-1)2
=24+128+96=248,
∴a6+a8=248+16=264.
故選:A.
點評 本題考查了二項式展開式定理的應(yīng)用問題,也考查了轉(zhuǎn)化思想的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 90元 | B. | 45元 | C. | 55元 | D. | 60.82元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
X1 | -2 | -1 | 0 | 1 | 2 |
P | 0.05 | 0.05 | 0.8 | 0.05 | 0.05 |
X2 | -2 | -1 | 0 | 1 | 2 |
P | 0.1 | 0.2 | 0.4 | 0.2 | 0.1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | B. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | C. | $\frac{\sqrt{2}-\sqrt{6}}{4}$ | D. | $-\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | -8 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com