【題目】傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯(lián)表:

戴口罩

不戴口罩

青年人

50

10

中老年人

20

20

1)能否有的把握認(rèn)為是否會佩戴口罩出行的行為與年齡有關(guān)?

2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

【答案】1)有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).

2

【解析】

(1) 根據(jù)列聯(lián)表和獨立性檢驗的公式計算出觀測值,從而由參考數(shù)據(jù)作出判斷.

(2) 因為樣本中出行不戴口罩的居民有30人,其中年輕人有10人,用樣本估計總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據(jù)獨立重復(fù)事件的概率公式即可求得結(jié)果.

1)由題意可知,

的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).

2)由樣本估計總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.

人未戴口罩,恰有2人是青年人的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),下列給出四個結(jié)論:

的最大值為2;

在區(qū)間上的單調(diào)增區(qū)間是;

③在中,若,則;

④將曲線向左平移個單位,得到函數(shù)的圖象,再將曲線

所有點的縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍(橫坐標(biāo)不變),得到函數(shù)的導(dǎo)數(shù)的圖象.其中正確的是_______________(填寫所有正確結(jié)論的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)設(shè)函數(shù)(其中的導(dǎo)函數(shù)),判斷上的單調(diào)性;

(2)若函數(shù)在定義域內(nèi)無零點,試確定正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求的普通方程和曲線C的直角坐標(biāo)方程;

2)求曲線C上的點到距離的最大值及該點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將編號為1,2,3,45,67的小球放入編號為1,2,3,45,67的七個盒子中,每盒放一球,若有且只有三個盒子的編號與放入的小球的編號相同,則不同的放法種數(shù)為( .

A.5040B.24C.315D.840

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某精密儀器生產(chǎn)車間每天生產(chǎn)個零件,質(zhì)檢員小張每天都會隨機地從中抽取50個零件進(jìn)行檢查是否合格,若較多零件不合格,則需對其余所有零件進(jìn)行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗,這些零件的長度服從正態(tài)分布(單位:微米),且相互獨立.若零件的長度滿足,則認(rèn)為該零件是合格的,否則該零件不合格.

1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求的數(shù)學(xué)期望;

2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當(dāng)天生產(chǎn)零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.

附:若隨機變量服從正態(tài)分布,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.

其中每一級過濾都由核心部件濾芯來實現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200.現(xiàn)需決策安裝凈水系統(tǒng)的同時購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個一級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個二級過濾器更換的濾芯個數(shù)制成的條形圖.

1:一級濾芯更換頻數(shù)分布表

一級濾芯更換的個數(shù)

8

9

頻數(shù)

60

40

2:二級濾芯更換頻數(shù)條形圖

100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.

1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16的概率;

2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;

3)記分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費用的期望值為決策依據(jù),試確定的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們稱n)元有序?qū)崝?shù)組(,,)為n維向量,為該向量的范數(shù).已知n維向量,其中,2,,n.記范數(shù)為奇數(shù)的n維向量的個數(shù)為,這個向量的范數(shù)之和為.

1)求的值;

2)當(dāng)n為偶數(shù)時,求,(用n表示).

查看答案和解析>>

同步練習(xí)冊答案