數(shù)列{an}定義是:a1=1,a2=2,a3=3,an+3=
an+1an+2+7
an
,n∈N*,證明:該數(shù)列中的項(xiàng)都是整數(shù).
考點(diǎn):數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由a1=1,a2=2,a3=3,an+3=
an+1an+2+7
an
,n∈N*,可得a4=13為整數(shù).利用數(shù)學(xué)歸納法證明“該數(shù)列中的項(xiàng)都是整數(shù)”即可.
解答: 證明:∵a1=1,a2=2,a3=3,an+3=
an+1an+2+7
an
,n∈N*,
∴a4=
a2a3+7
a1
=
2×3+7
1
=13為整數(shù).
下面利用數(shù)學(xué)歸納法證明:該數(shù)列中的項(xiàng)都是整數(shù).
(1)當(dāng)n=1,2,3,4時(shí),an都是整數(shù),命題成立;
(2)假設(shè)當(dāng)n≤k+3(k∈N*)時(shí),命題成立.
∵ak+3ak=ak+1ak+2+7,ak+4ak+1=ak+2ak+3+7,
∴(ak+4+ak+2)ak+1=ak+3(ak+ak+2),
由于等式右邊為整數(shù),ak+1,ak+2為整數(shù),
則ak+4必然為整數(shù),
因此當(dāng)n=k+4時(shí),命題成立.
綜上可得:該數(shù)列中的項(xiàng)都是整數(shù).
點(diǎn)評(píng):本題考查了遞推式的應(yīng)用、數(shù)學(xué)歸納法,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知在正方體ABCD-A1B1C1D1中,E是DD1的中點(diǎn),求證:DB1∥平面A1C1E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-alnx-
1
3
(a∈R,a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={0,1,2,3,4,5},P(a,b)表示平面上的點(diǎn),a、b∈M.
(1)P可以表示平面上的多少個(gè)不同點(diǎn)
(2)P可以表示多少個(gè)不在直線(xiàn)y=x上的點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠(chǎng)生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠(chǎng)單價(jià)為60元,該廠(chǎng)為鼓勵(lì)銷(xiāo)售商,決定當(dāng)一次性訂購(gòu)量不少于100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠(chǎng)單價(jià)就降低0.02元,但實(shí)際出廠(chǎng)單價(jià)不能低于50元(例如一次性訂購(gòu)101個(gè)零件,則101個(gè)零件的單價(jià)是60-1×0.02=59.98元).
(1)當(dāng)銷(xiāo)售商一次訂購(gòu)500個(gè)零件時(shí),該廠(chǎng)獲得的利潤(rùn)是多少元?
(2)設(shè)一次訂購(gòu)量為X個(gè)時(shí),零件的出廠(chǎng)單價(jià)為Y元.寫(xiě)出y=f(X)的函數(shù)表達(dá)式;
(3)若廠(chǎng)方現(xiàn)有600個(gè)零件,當(dāng)銷(xiāo)售商一次性訂購(gòu)量x(x>100)為多少個(gè)時(shí),廠(chǎng)方的銷(xiāo)售額g(x)最大?(銷(xiāo)售額g(x)=銷(xiāo)售數(shù)量×銷(xiāo)售單價(jià))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四邊形ABCD中,對(duì)角線(xiàn)AC,BD交于點(diǎn)O且|
AB
|=|
AD
|=1,
OA
+
OC
=
OB
+
OD
=0
,cos∠DAB=
1
2
,求|
DC
+
BC
|與|
CD
+
BC
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在三棱錐O-ABC中,OA=OB=OC=AB=BC=AC=1,則求異面直線(xiàn)OA與BC所成的角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sinxcosx-
3
cos2x+1.
(1)求f(x)的最小正周期;
(2)當(dāng)x∈[
π
4
,
π
2
]時(shí),求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,拋物線(xiàn)y=4-x2與直線(xiàn)y=3x的兩交點(diǎn)為A、B,點(diǎn)P在拋物線(xiàn)上從A向B運(yùn)動(dòng).
(1)求使△PAB的面積最大時(shí)P點(diǎn)的坐標(biāo)(a,b).
(2)證明由拋物線(xiàn)與線(xiàn)段AB圍成的圖形,被直線(xiàn)x=a分為面積相等的兩部分.

查看答案和解析>>

同步練習(xí)冊(cè)答案