【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如表.

非一線

一線

總計

愿生

45

20

65

不愿生

13

22

35

總計

58

42

100

附表:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

由K2= 算得,K2= ≈9.616參照附表,得到的正確結(jié)論是(
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別無關(guān)”
C.有99%以上的把握認(rèn)為“生育意愿與城市級別有關(guān)”
D.有99%以上的把握認(rèn)為“生育意愿與城市級別無關(guān)”

【答案】C
【解析】解:根據(jù)列聯(lián)表所給的數(shù)據(jù),代入隨機變量的觀測值公式, K2= ≈9.616>6.635,
∴有99%以上的把握認(rèn)為“生育意愿與城市級別有關(guān)”,
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的一系列對應(yīng)值如下表:

-1

1

3

1

-1

1

3

(1)根據(jù)表格提供的數(shù)據(jù)畫出函數(shù)的圖像并求出函數(shù)解析式;

(2)根據(jù)(1)的結(jié)果,若函數(shù)的周期為,當(dāng)時,方程恰有兩個不同的解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
(1)求λ的值及數(shù)列{an}的通項公式;
(2)設(shè) ,且數(shù)列{bn}的前n項和為Sn , 求S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有教師400人,對他們進(jìn)行年齡狀況和學(xué)歷的調(diào)查,其結(jié)果如下:

學(xué)歷

35歲以下

35-55

55歲及以上

本科

60

40

碩士

80

40

(1)若隨機抽取一人,年齡是35歲以下的概率為,求

(2)在35-55歲年齡段的教師中,按學(xué)歷狀況用分層抽樣的方法,抽取一個樣本容量為5的樣本,然后在這5名教師中任選2人,求兩人中至多有1人的學(xué)歷為本科的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項均為正數(shù),前項和為,且.

1)求證:數(shù)列是等差數(shù)列;

2)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=[x3+3x2+(a+6)x+6﹣a]ex在區(qū)間(2,4)上存在極大值點,則實數(shù)a的取值范圍是(
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,sin(A﹣B)=sinC﹣sinB,D是邊BC的一個三等分點(靠近點B),記 ,則當(dāng)λ取最大值時,tan∠ACD=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 處有極值 .
(1)求 , 的值;
(2)判斷函數(shù) 的單調(diào)性并求出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,F(xiàn)1、F2分別是橢圓的左、右焦點,M為橢圓上除長軸端點外的任意一點,且△MF1F2的周長為4+2
(1)求橢圓C的方程;
(2)過點D(0,﹣2)作直線l與橢圓C交于A、B兩點,點N滿足 (O為原點),求四邊形OANB面積的最大值,并求此時直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案