(本小題滿分12分)
已知焦點在軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點為圓心,1為半徑的圓相切,又知C的一個焦點與A關(guān)于直線對稱.
(1)求雙曲線C的方程;
(2)設(shè)直線與雙曲線C的左支交于A,B兩點,另一直線經(jīng)過M(-2,0)及AB的中點,求直線在軸上的截距b的取值范圍.
(1);(2).
解析試題分析:(1)設(shè)雙曲線C的漸近線方程為y=kx,則kx-y=0
∵該直線與圓相切,∴雙曲線C的兩條漸近線方程為y=±x.
故設(shè)雙曲線C的方程為.
又雙曲線C的一個焦點為,∴,.
∴雙曲線C的方程為:.
(2)由得.令
∵直線與雙曲線左支交于兩點,等價于方程f(x)=0在上有兩個不等實根.
因此,解得又AB中點為,∴直線l的方程為:. 令x=0,得.∵,∴,∴.
考點:本題考查雙曲線的標準方程;雙曲線的性質(zhì);直線與雙曲線的綜合應(yīng)用;二次函數(shù)在某區(qū)間上的值域。
點評:研究直線與雙曲線的綜合問題,通常的思路是:轉(zhuǎn)化為研究方程組的解的問題,利用直線方程與雙曲線方程所組成的方程組消去一個變量后,將交點問題(包括公共點個數(shù)、與交點坐標有關(guān)的問題)轉(zhuǎn)化為一元二次方程根的問題,結(jié)合根與系數(shù)的關(guān)系及判別式解決問題。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分15分) 已知動圓過定點,且與直線相切,橢圓 的對稱軸為坐標軸,一個焦點是,點在橢圓上.
(Ⅰ)求動圓圓心的軌跡的方程及其橢圓的方程;
(Ⅱ)若動直線與軌跡在處的切線平行,且直線與橢圓交于兩點,問:是否存在著這樣的直線使得的面積等于?如果存在,請求出直線的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知橢圓上的任意一點到它的兩個焦點, 的距離之和為,且其焦距為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓交于不同的兩點A,B.問是否存在以A,B為直徑
的圓 過橢圓的右焦點.若存在,求出的值;不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓,點在橢圓上。
(1)求橢圓的離心率;
(2)若橢圓的短半軸長為,直線與橢圓交于A、B,且線段AB以M(1,1)為中點,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
斜率為k的直線過點P(0,1),與雙曲線交于A,B兩點.
(1)求實數(shù)k的取值范圍;
(2)若以AB為直徑的圓過坐標原點,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的焦點F1(-,0)和F2(,0),長軸長6。
(1)求橢圓C的標準方程。
(2)設(shè)直線交橢圓C于A、B兩點,求線段AB的中點坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)雙曲線C:的左、右頂點分別為A1、A2,垂直于x軸的直線m與雙曲線C交于不同的兩點。
(1)若直線m與x軸正半軸的交點為T,且,求點T的坐標;
(2)求直線A1P與直線A2Q的交點M的軌跡E的方程;
(3)過點F(1,0)作直線l與(Ⅱ)中的軌跡E交于不同的兩點A、B,設(shè),若(T為(1)中的點)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com